BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

237 related articles for article (PubMed ID: 25628635)

  • 1. Factors contributing to deep supercooling capability and cold survival in dwarf bamboo (Sasa senanensis) leaf blades.
    Ishikawa M; Oda A; Fukami R; Kuriyama A
    Front Plant Sci; 2014; 5():791. PubMed ID: 25628635
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Deep Supercooling in Most Tissues of Wintering Sasa senanensis and Its Mechanism in Leaf Blade Tissues.
    Ishikawa M
    Plant Physiol; 1984 May; 75(1):196-202. PubMed ID: 16663570
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Cryo-scanning electron microscopic study on freezing behavior of xylem ray parenchyma cells in hardwood species.
    Fujikawa S; Kuroda K
    Micron; 2000 Dec; 31(6):669-86. PubMed ID: 10838028
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Frost Survival Mechanism of Vegetative Buds in Temperate Trees: Deep Supercooling and Extraorgan Freezing vs. Ice Tolerance.
    Neuner G; Monitzer K; Kaplenig D; Ingruber J
    Front Plant Sci; 2019; 10():537. PubMed ID: 31143193
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Freezing resistance in Patagonian woody shrubs: the role of cell wall elasticity and stem vessel size.
    Zhang YJ; Bucci SJ; Arias NS; Scholz FG; Hao GY; Cao KF; Goldstein G
    Tree Physiol; 2016 Aug; 36(8):1007-18. PubMed ID: 27217529
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Freezing avoidance by supercooling in Olea europaea cultivars: the role of apoplastic water, solute content and cell wall rigidity.
    Arias NS; Bucci SJ; Scholz FG; Goldstein G
    Plant Cell Environ; 2015 Oct; 38(10):2061-70. PubMed ID: 25737264
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Cryo-scanning electron microscopy reveals that supercooling of overwintering buds of freezing-resistant interspecific hybrid grape 'Yamasachi' is accompanied by partial dehydration.
    Kasuga J; Tsumura Y; Kondoh D; Jitsuyama Y; Horiuchi R; Arakawa K
    J Plant Physiol; 2020 Oct; 253():153248. PubMed ID: 32862035
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Ice barriers promote supercooling and prevent frost injury in reproductive buds, flowers and fruits of alpine dwarf shrubs throughout the summer.
    Kuprian E; Briceño VF; Wagner J; Neuner G
    Environ Exp Bot; 2014 Oct; 106(100):4-12. PubMed ID: 25284910
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Ice Nucleation Activity in Plants: The Distribution, Characterization, and Their Roles in Cold Hardiness Mechanisms.
    Ishikawa M; Yamazaki H; Kishimoto T; Murakawa H; Stait-Gardner T; Kuchitsu K; Price WS
    Adv Exp Med Biol; 2018; 1081():99-115. PubMed ID: 30288706
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Cold hardiness and deep supercooling in xylem of shagbark hickory.
    George MF; Burke MJ
    Plant Physiol; 1977 Feb; 59(2):319-25. PubMed ID: 16659841
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Supercooling, ice inoculation and freeze tolerance in the European common lizard, Lacerta vivipara.
    Costanzo JP; Grenot C; Lee RE
    J Comp Physiol B; 1995; 165(3):238-44. PubMed ID: 7665737
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Supercooling and freezing as eco-physiological alternatives rather than mutually exclusive strategies: A case study in Pyrrhocoris apterus.
    Rozsypal J; Košťál V
    J Insect Physiol; 2018; 111():53-62. PubMed ID: 30393171
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Preferential freezing avoidance localised in anthers and embryo sacs in wintering Daphne kamtschatica var. jezoensis flower buds visualised by magnetic resonance imaging.
    Ishikawa M; Ide H; Tsujii T; Stait-Gardner T; Kubo H; Matsushita N; Fukuda K; Price WS; Arata Y
    Plant Cell Environ; 2022 Jul; 45(7):2109-2125. PubMed ID: 34985134
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Ice nucleation activity in various tissues of Rhododendron flower buds: their relevance to extraorgan freezing.
    Ishikawa M; Ishikawa M; Toyomasu T; Aoki T; Price WS
    Front Plant Sci; 2015; 6():149. PubMed ID: 25859249
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Gene expression associated with increased supercooling capability in xylem parenchyma cells of larch (Larix kaempferi).
    Takata N; Kasuga J; Takezawa D; Arakawa K; Fujikawa S
    J Exp Bot; 2007; 58(13):3731-42. PubMed ID: 18057043
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Frost injury and heterogeneous ice nucleation in leaves of tuber-bearing solanum species : ice nucleation activity of external source of nucleants.
    Rajashekar CB; Li PH; Carter JV
    Plant Physiol; 1983 Apr; 71(4):749-55. PubMed ID: 16662901
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Endogenous and exogenous ice-nucleating agents constrain supercooling in the hatchling painted turtle.
    Costanzo JP; Baker PJ; Dinkelacker SA; Lee RE
    J Exp Biol; 2003 Feb; 206(Pt 3):477-85. PubMed ID: 12502768
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Freezing stress survival mechanisms in Vaccinium macrocarpon Ait. terminal buds.
    Villouta C; Workmaster BA; Bolivar-Medina J; Sinclair S; Atucha A
    Tree Physiol; 2020 Jun; 40(7):841-855. PubMed ID: 32163157
    [TBL] [Abstract][Full Text] [Related]  

  • 19. X-ray phase contrast imaging of Vitis spp. buds shows freezing pattern and correlation between volume and cold hardiness.
    Kovaleski AP; Londo JP; Finkelstein KD
    Sci Rep; 2019 Oct; 9(1):14949. PubMed ID: 31628356
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Freezing behaviors in leaf buds of cold-hardy conifers visualized by NMR microscopy.
    Ide H; Price WS; Arata Y; Ishikawa M
    Tree Physiol; 1998 Jul; 18(7):451-458. PubMed ID: 12651356
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.