These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

241 related articles for article (PubMed ID: 25628635)

  • 21. Freezing behaviours in wintering Cornus florida flower bud tissues revisited using MRI.
    Ishikawa M; Ide H; Yamazaki H; Murakawa H; Kuchitsu K; Price WS; Arata Y
    Plant Cell Environ; 2016 Dec; 39(12):2663-2675. PubMed ID: 27497429
    [TBL] [Abstract][Full Text] [Related]  

  • 22. The Siberian timberman Acanthocinus aedilis: a freeze-tolerant beetle with low supercooling points.
    Kristiansen E; Li NG; Averensky AI; Laugsand AE; Zachariassen KE
    J Comp Physiol B; 2009 Jul; 179(5):563-8. PubMed ID: 19153749
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Biological ice nucleation and ice distribution in cold-hardy ectothermic animals.
    Lee RE; Costanzo JP
    Annu Rev Physiol; 1998; 60():55-72. PubMed ID: 9558454
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Photoperiodic and thermal regulation of development and cold hardiness in larvae of the clover leaf weevil, Hypera punctata.
    Watanabe M
    Cryobiology; 2000 Jun; 40(4):294-301. PubMed ID: 10924261
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Freezing resistance and behavior of winter buds and canes of wine grapes cultivated in northern Japan.
    Horiuchi R; Arakawa K; Kasuga J; Suzuki T; Jitsuyama Y
    Cryobiology; 2021 Aug; 101():44-51. PubMed ID: 34144014
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Deep supercooling enabled by surface impregnation with lipophilic substances explains the survival of overwintering buds at extreme freezing.
    Neuner G; Kreische B; Kaplenig D; Monitzer K; Miller R
    Plant Cell Environ; 2019 Jul; 42(7):2065-2074. PubMed ID: 30827059
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Influence of simulated acid snow stress on leaf tissue of wintering herbaceous plants.
    Inada H; Nagao M; Fujikawa S; Arakawa K
    Plant Cell Physiol; 2006 Apr; 47(4):504-12. PubMed ID: 16481360
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Visualization of Freezing Behaviors in Leaf and Flower Buds of Full-Moon Maple by Nuclear Magnetic Resonance Microscopy.
    Ishikawa M; Price WS; Ide H; Arata Y
    Plant Physiol; 1997 Dec; 115(4):1515-1524. PubMed ID: 12223878
    [TBL] [Abstract][Full Text] [Related]  

  • 29. The cost of avoiding freezing in stems: trade-off between xylem resistance to cavitation and supercooling capacity in woody plants.
    Arias NS; Scholz FG; Goldstein G; Bucci SJ
    Tree Physiol; 2017 Sep; 37(9):1251-1262. PubMed ID: 28633378
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Optimized differential thermal analysis sheds light on the effect of temperature on peach floral bud cold hardiness and transition from endo- to ecodormancy.
    Sterle DG; Caspari HW; Minas IS
    Plant Sci; 2023 Oct; 335():111791. PubMed ID: 37451549
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Mechanism of freezing resistance in eco-dormant birch buds under winter subzero temperatures.
    Endoh K; Fujikawa S
    Tree Physiol; 2021 Apr; 41(4):606-618. PubMed ID: 31860718
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Cold hardiness in various organs and tissues of Rhododendron species and the supercooling ability of flower buds as the most susceptible organ.
    Iwaya-Inoue M; Kaku S
    Cryobiology; 1983 Jun; 20(3):310-7. PubMed ID: 6884072
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Relationship between cold hardiness and supercooling point in Aedes albopictus eggs.
    Hanson SM; Craig GB
    J Am Mosq Control Assoc; 1995 Mar; 11(1):35-8. PubMed ID: 7616187
    [TBL] [Abstract][Full Text] [Related]  

  • 34. High ice nucleation activity located in blueberry stem bark is linked to primary freeze initiation and adaptive freezing behaviour of the bark.
    Kishimoto T; Yamazaki H; Saruwatari A; Murakawa H; Sekozawa Y; Kuchitsu K; Price WS; Ishikawa M
    AoB Plants; 2014 Jul; 6():. PubMed ID: 25082142
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Units of freezing of deep supercooled water in woody xylem.
    Hong SG; Sucoff E
    Plant Physiol; 1980 Jul; 66(1):40-5. PubMed ID: 16661390
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Velocity and pattern of ice propagation and deep supercooling in woody stems of Castanea sativa, Morus nigra and Quercus robur measured by IDTA.
    Neuner G; Xu B; Hacker J
    Tree Physiol; 2010 Aug; 30(8):1037-45. PubMed ID: 20616300
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Topical application of ice-nucleating-active bacteria decreases insect cold tolerance.
    Strong-Gunderson JM; Lee RE; Lee MR
    Appl Environ Microbiol; 1992 Sep; 58(9):2711-6. PubMed ID: 16348764
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Brief Chilling to Subzero Temperature Increases Cold Hardiness in the Hatchling Painted Turtle (Chrysemys picta).
    Muir TJ; Costanzo JP; Lee RE
    Physiol Biochem Zool; 2010; 83(1):174-81. PubMed ID: 19947887
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Winter Nights during Summer Time: Stress Physiological Response to Ice and the Facilitation of Freezing Cytorrhysis by Elastic Cell Wall Components in the Leaves of a Nival Species.
    Stegner M; Lackner B; Schäfernolte T; Buchner O; Xiao N; Gierlinger N; Holzinger A; Neuner G
    Int J Mol Sci; 2020 Sep; 21(19):. PubMed ID: 32987913
    [No Abstract]   [Full Text] [Related]  

  • 40. Cold hardiness and supercooling along an altitudinal gradient in andean giant rosette species.
    Goldstein G; Rada F; Azocar A
    Oecologia; 1985 Dec; 68(1):147-152. PubMed ID: 28310924
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 13.