BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

114 related articles for article (PubMed ID: 25629295)

  • 21. Evidence for a Sigmatropic and an Ionic Pathway in the Winstein Rearrangement.
    Ott AA; Packard MH; Ortuño MA; Johnson A; Suding VP; Cramer CJ; Topczewski JJ
    J Org Chem; 2018 Aug; 83(15):8214-8224. PubMed ID: 29870252
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Synthesis of 4-substituted homoallylic alcohols via a one-pot tandem Lewis-acid catalyzed crotylboration-[3,3]-sigmatropic rearrangement.
    Ramachandran PV; Pratihar D; Biswas D
    Chem Commun (Camb); 2005 Apr; (15):1988-9. PubMed ID: 15834481
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Sterically biased 3,3-sigmatropic rearrangement of chiral allylic azides: application to the total syntheses of alkaloids.
    Lauzon S; Tremblay F; Gagnon D; Godbout C; Chabot C; Mercier-Shanks C; Perreault S; DeSève H; Spino C
    J Org Chem; 2008 Aug; 73(16):6239-50. PubMed ID: 18642871
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Use of the curtius rearrangement of acryloyl azides in the synthesis of 3,5-disubstituted pyridines: mechanistic studies.
    Chuang TH; Chen YC; Pola S
    J Org Chem; 2010 Oct; 75(19):6625-30. PubMed ID: 20828169
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Trimethylsilylnitrate-trimethylsilyl azide: a novel reagent system for the synthesis of 2-deoxyglycosyl azides from glycals. Application in the synthesis of 2-deoxy-beta-N-glycopeptides.
    Reddy BG; Madhusudanan KP; Vankar YD
    J Org Chem; 2004 Apr; 69(7):2630-3. PubMed ID: 15049677
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Synthesis of azide-alkyne fragments for "click" chemical applications. Part 2. Formation of oligomers from orthogonally protected chiral trialkylsilylhomopropargyl azides and homopropargyl alcohols.
    Montagnat OD; Lessene G; Hughes AB
    J Org Chem; 2010 Jan; 75(2):390-8. PubMed ID: 20000729
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Synthesis of highly-substituted enantiomerically pure allylboronic esters and investigation of their stereoselective addition to aldehydes.
    Vahabi R; Frey W; Pietruszka J
    J Org Chem; 2013 Nov; 78(22):11549-59. PubMed ID: 24195579
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Efficient approach to 3,3-bissilyl carbonyl and enol derivatives via retro-[1,4] brook rearrangement of 3-silyl allyloxysilanes.
    Song Z; Lei Z; Gao L; Wu X; Li L
    Org Lett; 2010 Nov; 12(22):5298-301. PubMed ID: 21028787
    [TBL] [Abstract][Full Text] [Related]  

  • 29. The allylic azide rearrangement: achieving selectivity.
    Feldman AK; Colasson B; Sharpless KB; Fokin VV
    J Am Chem Soc; 2005 Oct; 127(39):13444-5. PubMed ID: 16190677
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Remote functionalization of C60 with enantiomerically pure cyclo-[2]-malonate tethers bearing C12 and C14 spacers: synthetic access to bisadducts of C60 with the inherently chiral trans-3 addition pattern.
    Riala M; Chronakis N
    J Org Chem; 2013 Aug; 78(15):7701-13. PubMed ID: 23826896
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Benzotriazol-1-yl-sulfonyl azide for diazotransfer and preparation of azidoacylbenzotriazoles.
    Katritzky AR; El Khatib M; Bol'shakov O; Khelashvili L; Steel PJ
    J Org Chem; 2010 Oct; 75(19):6532-9. PubMed ID: 20825153
    [TBL] [Abstract][Full Text] [Related]  

  • 32. anti-Diols from α-oxyaldehydes: synthesis and stereochemical assignment of oxylipins from Dracontium loretense.
    Abeykoon GA; Chatterjee S; Chen JS
    Org Lett; 2014 Jun; 16(12):3248-51. PubMed ID: 24918974
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Direct catalytic azidation of allylic alcohols.
    Rueping M; Vila C; Uria U
    Org Lett; 2012 Feb; 14(3):768-71. PubMed ID: 22256853
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Genetic engineering of Pseudomonas putida KT2442 for biotransformation of aromatic compounds to chiral cis-diols.
    Ouyang SP; Liu Q; Sun SY; Chen JC; Chen GQ
    J Biotechnol; 2007 Nov; 132(3):246-50. PubMed ID: 17826856
    [TBL] [Abstract][Full Text] [Related]  

  • 35. A facile route to gamma-nitro imidates via four-component reaction of alkynes with sulfonyl azides, alcohols, and nitroolefins.
    Song W; Lu W; Wang J; Lu P; Wang Y
    J Org Chem; 2010 May; 75(10):3481-3. PubMed ID: 20373817
    [TBL] [Abstract][Full Text] [Related]  

  • 36. A highly efficient azide-based protecting group for amines and alcohols.
    Pothukanuri S; Winssinger N
    Org Lett; 2007 May; 9(11):2223-5. PubMed ID: 17480087
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Structure, stereochemistry and synthesis of enantiopure cyclohexenone cis-diol bacterial metabolites derived from phenols.
    Boyd DR; Sharma ND; Malone JF; McIntyre PB; Stevenson PJ; Allen CC; Kwit M; Gawronski J
    Org Biomol Chem; 2012 Aug; 10(30):6217-29. PubMed ID: 22426838
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Iron-catalyzed ring-opening azidation and allylation of O-heterocycles.
    Sawama Y; Shibata K; Sawama Y; Takubo M; Monguchi Y; Krause N; Sajiki H
    Org Lett; 2013 Oct; 15(20):5282-5. PubMed ID: 24083667
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Diastereoselective synthesis of vicinal tertiary diols.
    Loertscher BM; Young PR; Evans PR; Castle SL
    Org Lett; 2013 Apr; 15(8):1930-3. PubMed ID: 23574012
    [TBL] [Abstract][Full Text] [Related]  

  • 40. A two-step, one-pot enzymatic synthesis of 2-substituted 1,3-diols.
    Kalaitzakis D; Smonou I
    J Org Chem; 2010 Dec; 75(24):8658-61. PubMed ID: 21090643
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.