These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

108 related articles for article (PubMed ID: 25629295)

  • 81. On the Winstein rearrangement: equilibrium and mechanism.
    Ott AA; Topczewski JJ
    ARKIVOC; 2019; 2019(1):1-17. PubMed ID: 31245793
    [TBL] [Abstract][Full Text] [Related]  

  • 82. Cascade Cope/Winstein Rearrangements: Synthesis of Azido-Cycloheptadienes from Dialkenylcyclopropanes Possessing a Vinyl Azide.
    Abegg T; Cossy J; Meyer C
    Org Lett; 2022 Jul; 24(27):4954-4959. PubMed ID: 35787030
    [No Abstract]   [Full Text] [Related]  

  • 83. Base-Induced Sulfoxide-Sulfenate Rearrangement of 2-Sulfinyl Dienes for the Regio- and Stereoselective Synthesis of Enantioenriched Dienyl Diols.
    Velado M; Martinović M; Alonso I; Tortosa M; Fernández de la Pradilla R; Viso A
    J Org Chem; 2023 Mar; 88(6):3697-3713. PubMed ID: 36868575
    [TBL] [Abstract][Full Text] [Related]  

  • 84. Electrochemical formal homocoupling of
    Yamamoto K; Arita K; Shiota M; Kuriyama M; Onomura O
    Beilstein J Org Chem; 2022; 18():1062-1069. PubMed ID: 36105731
    [TBL] [Abstract][Full Text] [Related]  

  • 85. Synthesis of Highly Congested Tertiary Alcohols via the [3,3] Radical Deconstruction of Breslow Intermediates.
    Machín Rivera R; Burton NR; Call LD; Tomat MA; Lindsay VNG
    Org Lett; 2022 Jun; 24(23):4275-4280. PubMed ID: 35657720
    [TBL] [Abstract][Full Text] [Related]  

  • 86. Synthesis of 1,2-Difunctionalized 1,3-Butadienes through a Sequence of Sigmatropic Rearrangements.
    Banert K; Fendel W; Schlott J
    Angew Chem Int Ed Engl; 1998 Dec; 37(23):3289-3292. PubMed ID: 29711425
    [TBL] [Abstract][Full Text] [Related]  

  • 87. Sigmatropic Rearrangement-Based Synthesis of 4-Alkenyl-1,3-dithiol-2-ones.
    Ostrovskis P; Mikhaylov AA; Zard SZ
    Org Lett; 2019 May; 21(10):3726-3729. PubMed ID: 31025564
    [TBL] [Abstract][Full Text] [Related]  

  • 88. Anionic sigmatropic-electrocyclic-Chugaev cascades: accessing 12-aryl-5-(methylthiocarbonylthio)tetracenes and a related anthra[2,3-b]thiophene.
    Burroughs L; Ritchie J; Ngwenya M; Khan D; Lewis W; Woodward S
    Beilstein J Org Chem; 2015; 11():273-9. PubMed ID: 25815080
    [TBL] [Abstract][Full Text] [Related]  

  • 89. Radical Azidonation of Benzylic Positions with Iodonium Azide.
    Viuf C; Bols M
    Angew Chem Int Ed Engl; 2001 Feb; 40(3):623-625. PubMed ID: 29712008
    [TBL] [Abstract][Full Text] [Related]  

  • 90. Optimized Synthesis of a Pentafluoro-
    Hazlitt RA; John JP; Tran QL; Colby DA
    Tetrahedron Lett; 2016 Apr; 57(17):1906-1908. PubMed ID: 27182091
    [TBL] [Abstract][Full Text] [Related]  

  • 91. Preparation of cycloheptane ring by nucleophilic cyclopropanation of 1,2-diketones with bis(iodozincio)methane.
    Haraguchi R; Takada Y; Matsubara S
    Org Biomol Chem; 2015 Jan; 13(1):241-7. PubMed ID: 25381867
    [TBL] [Abstract][Full Text] [Related]  

  • 92. Regioselective 1,2-Diol Rearrangement by Controlling the Loading of BF
    Wang JL; Li HJ; Wang HS; Wu YC
    Org Lett; 2017 Jul; 19(14):3811-3814. PubMed ID: 28696127
    [TBL] [Abstract][Full Text] [Related]  

  • 93. Stereocontrol in radical processes through the exocyclic effect: dual role of triethylboron as radical initiator and in situ derivatization agent.
    Bouvier JP; Jung G; Liu Z; Guérin B; Guindon Y
    Org Lett; 2001 May; 3(9):1391-4. PubMed ID: 11348242
    [TBL] [Abstract][Full Text] [Related]  

  • 94. BN-phenanthryne: cyclotetramerization of an 1,2-azaborine derivative.
    Müller M; Maichle-Mössmer C; Bettinger HF
    Angew Chem Int Ed Engl; 2014 Aug; 53(35):9380-3. PubMed ID: 25044930
    [TBL] [Abstract][Full Text] [Related]  

  • 95. Enantioselective Synthesis of (-)- and (+)-Conduritol F via Enzymatic Asymmetrization of cis-Cyclohexa-3,5-diene-1,2-diol.
    Patti A; Sanfilippo C; Piattelli M; Nicolosi G
    J Org Chem; 1996 Sep; 61(18):6458-6461. PubMed ID: 11667496
    [No Abstract]   [Full Text] [Related]  

  • 96. Novel [2,3]-sigmatropic rearrangement for carbon--nitrogen bond formation.
    Ishikawa T; Kawakami M; Fukui M; Yamashita A; Urano J; Saito S
    J Am Chem Soc; 2001 Aug; 123(31):7734-5. PubMed ID: 11481010
    [No Abstract]   [Full Text] [Related]  

  • 97. Double [3,3]-sigmatropic rearrangement in the enzymatic dioxygenation of benzyl azide: preparation of novel synthetically valuable azido-diols.
    Thevenet N; de la Sovera V; Vila MA; Veiga N; Gonzalez D; Seoane G; Carrera I
    Org Lett; 2015 Feb; 17(3):684-7. PubMed ID: 25629295
    [TBL] [Abstract][Full Text] [Related]  

  • 98. Toluene Dioxygenase-Catalysed Oxidation of Benzyl Azide to Benzonitrile: Mechanistic Insights for an Unprecedented Enzymatic Transformation.
    Vila MA; Pazos M; Iglesias C; Veiga N; Seoane G; Carrera I
    Chembiochem; 2016 Feb; 17(4):291-5. PubMed ID: 26663213
    [TBL] [Abstract][Full Text] [Related]  

  • 99. Enantiopure 1,4-diols and 1,4-aminoalcohols via stereoselective acyclic sulfoxide-sulfenate rearrangement.
    Fernández de la Pradilla R; Colomer I; Ureña M; Viso A
    Org Lett; 2011 May; 13(9):2468-71. PubMed ID: 21469662
    [TBL] [Abstract][Full Text] [Related]  

  • 100. Azide rearrangements in electron-deficient systems.
    Lang S; Murphy JA
    Chem Soc Rev; 2006 Feb; 35(2):146-56. PubMed ID: 16444296
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.