BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

142 related articles for article (PubMed ID: 25629296)

  • 1. Effect of different solutes, natural organic matter, and particulate Fe(III) on ferrate(VI) decomposition in aqueous solutions.
    Jiang Y; Goodwill JE; Tobiason JE; Reckhow DA
    Environ Sci Technol; 2015 Mar; 49(5):2841-8. PubMed ID: 25629296
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Impact of inorganic buffering ions on the stability of Fe(vi) in aqueous solution: role of the carbonate ion.
    Kolář M; Novák P; Šišková KM; Machala L; Malina O; Tuček J; Sharma VK; Zbořil R
    Phys Chem Chem Phys; 2016 Feb; 18(6):4415-22. PubMed ID: 26790819
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Bromide oxidation by ferrate(VI): The formation of active bromine and bromate.
    Jiang Y; Goodwill JE; Tobiason JE; Reckhow DA
    Water Res; 2016 Jun; 96():188-97. PubMed ID: 27050745
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Ferrate self-decomposition in water is also a self-activation process: Role of Fe(V) species and enhancement with Fe(III) in methyl phenyl sulfoxide oxidation by excess ferrate.
    Huang ZS; Wang L; Liu YL; Zhang HY; Zhao XN; Bai Y; Ma J
    Water Res; 2021 Jun; 197():117094. PubMed ID: 33836297
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Impacts of ferrate oxidation on natural organic matter and disinfection byproduct precursors.
    Jiang Y; Goodwill JE; Tobiason JE; Reckhow DA
    Water Res; 2016 Jun; 96():114-25. PubMed ID: 27038382
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A simple treatment method for phenylarsenic compounds: Oxidation by ferrate (VI) and simultaneous removal of the arsenate released with in situ formed Fe(III) oxide-hydroxide.
    Xie X; Cheng H
    Environ Int; 2019 Jun; 127():730-741. PubMed ID: 31003056
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Reduction of organically complexed ferric iron by superoxide in a simulated natural water.
    Rose AL; Waite TD
    Environ Sci Technol; 2005 Apr; 39(8):2645-50. PubMed ID: 15884361
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Spectrophotometric determination of ferrate (Fe(VI)) in water by ABTS.
    Lee Y; Yoon J; von Gunten U
    Water Res; 2005 May; 39(10):1946-53. PubMed ID: 15876448
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Mechanism insight into the role of clay particles on enhancing phosphate removal by ferrate compared with ferric salt.
    Li W; Ouyang F; An G; Yang C; Zhong R; Xiao F; Peng D; Wang D
    Environ Sci Pollut Res Int; 2021 Sep; 28(33):45414-45421. PubMed ID: 33866501
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Impact of Phosphate on Ferrate Oxidation of Organic Compounds: An Underestimated Oxidant.
    Huang ZS; Wang L; Liu YL; Jiang J; Xue M; Xu CB; Zhen YF; Wang YC; Ma J
    Environ Sci Technol; 2018 Dec; 52(23):13897-13907. PubMed ID: 30379540
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Role of Ferrate(IV) and Ferrate(V) in Activating Ferrate(VI) by Calcium Sulfite for Enhanced Oxidation of Organic Contaminants.
    Shao B; Dong H; Sun B; Guan X
    Environ Sci Technol; 2019 Jan; 53(2):894-902. PubMed ID: 30570262
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Ferrates: greener oxidants with multimodal action in water treatment technologies.
    Sharma VK; Zboril R; Varma RS
    Acc Chem Res; 2015 Feb; 48(2):182-91. PubMed ID: 25668700
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Mechanistic insight of weak magnetic field trigger transformation of amorphous Fe(III)-(oxy)hydroxide for enhanced ferrate (VI) towards selective removal of natural organic matter.
    Yang G; Cheng Z; Bao H; Zhang L; Zhang H; Jia H; Wang J
    Chemosphere; 2022 Sep; 303(Pt 2):134967. PubMed ID: 35623432
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Effect of pH and stream order on iron and arsenic speciation in boreal catchments.
    Neubauer E; Köhler SJ; von der Kammer F; Laudon H; Hofmann T
    Environ Sci Technol; 2013 Jul; 47(13):7120-8. PubMed ID: 23692297
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The role of Fe(III) on phosphate released during the photo-decomposition of organic phosphorus in deionized and natural waters.
    Jiang Y; Kang N; Zhou Y; Liu G; Zhu D
    Chemosphere; 2016 Dec; 164():208-214. PubMed ID: 27591372
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Remarkable efficiency of phosphate removal: Ferrate(VI)-induced in situ sorption on core-shell nanoparticles.
    Kralchevska RP; Prucek R; Kolařík J; Tuček J; Machala L; Filip J; Sharma VK; Zbořil R
    Water Res; 2016 Oct; 103():83-91. PubMed ID: 27438903
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Inhibition of uranium(VI) sorption on titanium dioxide by surface iron(III) species in ferric oxide/titanium dioxide systems.
    Comarmond MJ; Payne TE; Collins RN; Palmer G; Lumpkin GR; Angove MJ
    Environ Sci Technol; 2012 Oct; 46(20):11128-34. PubMed ID: 23013221
    [TBL] [Abstract][Full Text] [Related]  

  • 18. On-line batch production of ferrate with an chemical method and its potential application for greywater recycling with Al(III) salt.
    Song Y; Men B; Wang D; Ma J
    J Environ Sci (China); 2017 Feb; 52():1-7. PubMed ID: 28254027
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The influence of ferric iron in calcined nano-Mg/Al hydrotalcite on adsorption of Cr (VI) from aqueous solution.
    Xiao L; Ma W; Han M; Cheng Z
    J Hazard Mater; 2011 Feb; 186(1):690-8. PubMed ID: 21145165
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Ferrate(VI) oxidation of tetrabromobisphenol A in comparison with bisphenol A.
    Yang B; Ying GG; Chen ZF; Zhao JL; Peng FQ; Chen XW
    Water Res; 2014 Oct; 62():211-9. PubMed ID: 24956603
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.