These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

184 related articles for article (PubMed ID: 25629373)

  • 21. Photoluminescence enhancement of ZnO nanowire arrays by atomic layer deposition of ZrO2 layers and thermal annealing.
    Zhang Y; Lu HL; Wang T; Ren QH; Chen HY; Zhang H; Ji XM; Liu WJ; Ding SJ; Zhang DW
    Phys Chem Chem Phys; 2016 Jun; 18(24):16377-85. PubMed ID: 27263423
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Highly luminescent CdTe/CdS/ZnO core/shell/shell quantum dots fabricated using an aqueous strategy.
    Zhimin Yuan ; Wang J; Yang P
    Luminescence; 2013; 28(2):169-75. PubMed ID: 22511616
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Enhanced electron field emission properties of high aspect ratio silicon nanowire-zinc oxide core-shell arrays.
    Kale VS; Prabhakar RR; Pramana SS; Rao M; Sow CH; Jinesh KB; Mhaisalkar SG
    Phys Chem Chem Phys; 2012 Apr; 14(13):4614-9. PubMed ID: 22354387
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Design of efficient dye-sensitized solar cells with patterned ZnO-ZnS core-shell nanowire array photoanodes.
    Chen X; Bai Z; Yan X; Yuan H; Zhang G; Lin P; Zhang Z; Liu Y; Zhang Y
    Nanoscale; 2014 May; 6(9):4691-7. PubMed ID: 24652390
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Plasmon-mediated photocatalytic activity of wet-chemically prepared ZnO nanowire arrays.
    Dao TD; Han G; Arai N; Nabatame T; Wada Y; Hoang CV; Aono M; Nagao T
    Phys Chem Chem Phys; 2015 Mar; 17(11):7395-403. PubMed ID: 25700130
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Wavelength-selective absorptance in GaAs, InP and InAs nanowire arrays.
    Azizur-Rahman KM; LaPierre RR
    Nanotechnology; 2015 Jul; 26(29):295202. PubMed ID: 26134509
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Design optimization and efficiency enhancement of axial junction nanowire solar cells utilizing a forward scattering mechanism.
    Ferdoushi M; Wahid S; Alam MK
    RSC Adv; 2022 Jun; 12(30):19359-19374. PubMed ID: 35865582
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Tuning of structural, optical, and magnetic properties of ultrathin and thin ZnO nanowire arrays for nano device applications.
    Shrama SK; Saurakhiya N; Barthwal S; Kumar R; Sharma A
    Nanoscale Res Lett; 2014 Mar; 9(1):122. PubMed ID: 24636275
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Laterally assembled nanowires for ultrathin broadband solar absorbers.
    Song KD; Kempa TJ; Park HG; Kim SK
    Opt Express; 2014 May; 22 Suppl 3():A992-A1000. PubMed ID: 24922405
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Composition-tuned ZnO--CdSSe core--shell nanowire arrays.
    Myung Y; Jang DM; Sung TK; Sohn YJ; Jung GB; Cho YJ; Kim HS; Park J
    ACS Nano; 2010 Jul; 4(7):3789-800. PubMed ID: 20527802
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Impact of nanocrystal spray deposition on inorganic solar cells.
    Townsend TK; Yoon W; Foos EE; Tischler JG
    ACS Appl Mater Interfaces; 2014 May; 6(10):7902-9. PubMed ID: 24755091
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Three-dimensional radial-junction ZnO nanowire/a-Si:H core-shell infrared photodiodes.
    Iheanacho BC; Tari A; Wong WS
    Nanotechnology; 2020 Aug; 31(35):35LT01. PubMed ID: 32422608
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Ultra-thin broadband solar absorber based on stadium-shaped silicon nanowire arrays.
    Mortazavifar SL; Salehi MR; Shahraki M; Abiri E
    Front Optoelectron; 2022 Apr; 15(1):6. PubMed ID: 36637569
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Vertically aligned ZnO nanorods on hot filament chemical vapor deposition grown graphene oxide thin film substrate: solar energy conversion.
    Ameen S; Akhtar MS; Song M; Shin HS
    ACS Appl Mater Interfaces; 2012 Aug; 4(8):4405-12. PubMed ID: 22827848
    [TBL] [Abstract][Full Text] [Related]  

  • 35. An Efficient and Effective Design of InP Nanowires for Maximal Solar Energy Harvesting.
    Wu D; Tang X; Wang K; He Z; Li X
    Nanoscale Res Lett; 2017 Nov; 12(1):604. PubMed ID: 29177708
    [TBL] [Abstract][Full Text] [Related]  

  • 36. TiO2 nanorod arrays functionalized with In2S3 shell layer by a low-cost route for solar energy conversion.
    Gan X; Li X; Gao X; Qiu J; Zhuge F
    Nanotechnology; 2011 Jul; 22(30):305601. PubMed ID: 21697580
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Ga doping to significantly improve the performance of all-electrochemically fabricated Cu2O-ZnO nanowire solar cells.
    Xie J; Guo C; Li CM
    Phys Chem Chem Phys; 2013 Oct; 15(38):15905-11. PubMed ID: 23945632
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Increased short circuit current in organic photovoltaic using high-surface area electrode based on ZnO nanowires decorated with CdTe quantum dots.
    Aga RS; Gunther D; Ueda A; Pan Z; Collins WE; Mu R; Singer KD
    Nanotechnology; 2009 Nov; 20(46):465204. PubMed ID: 19847023
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Cl-doped ZnO nanowires with metallic conductivity and their application for high-performance photoelectrochemical electrodes.
    Wang F; Seo JH; Li Z; Kvit AV; Ma Z; Wang X
    ACS Appl Mater Interfaces; 2014 Jan; 6(2):1288-93. PubMed ID: 24383705
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Chemical conversion synthesis of ZnS shell on ZnO nanowire arrays: morphology evolution and its effect on dye-sensitized solar cell.
    Liu L; Chen Y; Guo T; Zhu Y; Su Y; Jia C; Wei M; Cheng Y
    ACS Appl Mater Interfaces; 2012 Jan; 4(1):17-23. PubMed ID: 22148364
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 10.