BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

247 related articles for article (PubMed ID: 25629660)

  • 1. A recurrent regulatory change underlying altered expression and Wnt response of the stickleback armor plates gene EDA.
    O'Brown NM; Summers BR; Jones FC; Brady SD; Kingsley DM
    Elife; 2015 Jan; 4():e05290. PubMed ID: 25629660
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Environment specific pleiotropy facilitates divergence at the Ectodysplasin locus in threespine stickleback.
    Barrett RD; Rogers SM; Schluter D
    Evolution; 2009 Nov; 63(11):2831-7. PubMed ID: 19545262
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Widespread parallel evolution in sticklebacks by repeated fixation of Ectodysplasin alleles.
    Colosimo PF; Hosemann KE; Balabhadra S; Villarreal G; Dickson M; Grimwood J; Schmutz J; Myers RM; Schluter D; Kingsley DM
    Science; 2005 Mar; 307(5717):1928-33. PubMed ID: 15790847
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Constraints on utilization of the EDA-signaling pathway in threespine stickleback evolution.
    Knecht AK; Hosemann KE; Kingsley DM
    Evol Dev; 2007; 9(2):141-54. PubMed ID: 17371397
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Reverse evolution of armor plates in the threespine stickleback.
    Kitano J; Bolnick DI; Beauchamp DA; Mazur MM; Mori S; Nakano T; Peichel CL
    Curr Biol; 2008 May; 18(10):769-774. PubMed ID: 18485710
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Dorsal spine evolution in threespine sticklebacks via a splicing change in MSX2A.
    Howes TR; Summers BR; Kingsley DM
    BMC Biol; 2017 Dec; 15(1):115. PubMed ID: 29212540
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Natural selection on a major armor gene in threespine stickleback.
    Barrett RD; Rogers SM; Schluter D
    Science; 2008 Oct; 322(5899):255-7. PubMed ID: 18755942
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Should I stay or should I go? The Ectodysplasin locus is associated with behavioural differences in threespine stickleback.
    Barrett RD; Vines TH; Bystriansky JS; Schulte PM
    Biol Lett; 2009 Dec; 5(6):788-91. PubMed ID: 19656860
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Multiple evolutionary pathways to decreased lateral plate coverage in freshwater threespine sticklebacks.
    Leinonen T; McCairns RJ; Herczeg G; Merilä J
    Evolution; 2012 Dec; 66(12):3866-75. PubMed ID: 23206143
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Phosphorus limitation does not drive loss of bony lateral plates in freshwater stickleback (Gasterosteus aculeatus).
    Archambeault SL; Durston DJ; Wan A; El-Sabaawi RW; Matthews B; Peichel CL
    Evolution; 2020 Sep; 74(9):2088-2104. PubMed ID: 32537747
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Strong and consistent natural selection associated with armour reduction in sticklebacks.
    LE Rouzic A; Østbye K; Klepaker TO; Hansen TF; Bernatchez L; Schluter D; Vøllestad LA
    Mol Ecol; 2011 Jun; 20(12):2483-93. PubMed ID: 21443674
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Predation's role in repeated phenotypic and genetic divergence of armor in threespine stickleback.
    Marchinko KB
    Evolution; 2009 Jan; 63(1):127-38. PubMed ID: 18803682
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The ectodysplasin-A receptor is a candidate gene for lateral plate number variation in stickleback fish.
    Laurentino TG; Boileau N; Ronco F; Berner D
    G3 (Bethesda); 2022 May; 12(6):. PubMed ID: 35377433
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A gene with major phenotypic effects as a target for selection vs. homogenizing gene flow.
    Raeymaekers JA; Konijnendijk N; Larmuseau MH; Hellemans B; De Meester L; Volckaert FA
    Mol Ecol; 2014 Jan; 23(1):162-81. PubMed ID: 24192132
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A low-density SNP array for analyzing differential selection in freshwater and marine populations of threespine stickleback (Gasterosteus aculeatus).
    Ferchaud AL; Pedersen SH; Bekkevold D; Jian J; Niu Y; Hansen MM
    BMC Genomics; 2014 Oct; 15(1):867. PubMed ID: 25286752
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Evolved Bmp6 enhancer alleles drive spatial shifts in gene expression during tooth development in sticklebacks.
    Stepaniak MD; Square TA; Miller CT
    Genetics; 2021 Dec; 219(4):. PubMed ID: 34849839
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Heterozygosity and asymmetry: Ectodysplasin as a form of genetic stress in marine threespine stickleback.
    Morris MRJ; Kaufman R; Rogers SM
    Evolution; 2019 Feb; 73(2):378-389. PubMed ID: 30597556
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Non-parallel divergence across freshwater and marine three-spined stickleback Gasterosteus aculeatus populations.
    Pujolar JM; Ferchaud AL; Bekkevold D; Hansen MM
    J Fish Biol; 2017 Jul; 91(1):175-194. PubMed ID: 28516498
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Discriminating selection on lateral plate phenotype and its underlying gene, Ectodysplasin, in threespine stickleback.
    Rennison DJ; Heilbron K; Barrett RD; Schluter D
    Am Nat; 2015 Jan; 185(1):150-6. PubMed ID: 25560560
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Longer or shorter spines: Reciprocal trait evolution in stickleback via triallelic regulatory changes in
    Roberts Kingman GA; Lee D; Jones FC; Desmet D; Bell MA; Kingsley DM
    Proc Natl Acad Sci U S A; 2021 Aug; 118(31):. PubMed ID: 34321354
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.