These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
227 related articles for article (PubMed ID: 25629765)
1. Identification of polyethylene glycol-resistant macrophages on stealth imaging in vitro using fluorescent organosilica nanoparticles. Nakamura M; Hayashi K; Nakano M; Kanadani T; Miyamoto K; Kori T; Horikawa K ACS Nano; 2015 Feb; 9(2):1058-71. PubMed ID: 25629765 [TBL] [Abstract][Full Text] [Related]
2. Characterization of rhodamine loaded PEG-g-PLA nanoparticles (NPs): effect of poly(ethylene glycol) grafting density. Essa S; Rabanel JM; Hildgen P Int J Pharm; 2011 Jun; 411(1-2):178-87. PubMed ID: 21458551 [TBL] [Abstract][Full Text] [Related]
3. Thiolated mucoadhesive and PEGylated nonmucoadhesive organosilica nanoparticles from 3-mercaptopropyltrimethoxysilane. Irmukhametova GS; Mun GA; Khutoryanskiy VV Langmuir; 2011 Aug; 27(15):9551-6. PubMed ID: 21707076 [TBL] [Abstract][Full Text] [Related]
4. Body distribution and in situ evading of phagocytic uptake by macrophages of long-circulating poly (ethylene glycol) cyanoacrylate-co-n-hexadecyl cyanoacrylate nanoparticles. Huang M; Wu W; Qian J; Wan DJ; Wei XL; Zhu JH Acta Pharmacol Sin; 2005 Dec; 26(12):1512-8. PubMed ID: 16297352 [TBL] [Abstract][Full Text] [Related]
5. Engineering Well-Characterized PEG-Coated Nanoparticles for Elucidating Biological Barriers to Drug Delivery. Yang Q; Lai SK Methods Mol Biol; 2017; 1530():125-137. PubMed ID: 28150200 [TBL] [Abstract][Full Text] [Related]
6. Impact of surface grafting density of PEG macromolecules on dually fluorescent silica nanoparticles used for the in vivo imaging of subcutaneous tumors. Adumeau L; Genevois C; Roudier L; Schatz C; Couillaud F; Mornet S Biochim Biophys Acta Gen Subj; 2017 Jun; 1861(6):1587-1596. PubMed ID: 28179102 [TBL] [Abstract][Full Text] [Related]
7. Evading immune cell uptake and clearance requires PEG grafting at densities substantially exceeding the minimum for brush conformation. Yang Q; Jones SW; Parker CL; Zamboni WC; Bear JE; Lai SK Mol Pharm; 2014 Apr; 11(4):1250-8. PubMed ID: 24521246 [TBL] [Abstract][Full Text] [Related]
8. Relaxometric property of organosilica nanoparticles internally functionalized with iron oxide and fluorescent dye for multimodal imaging. Nakamura M; Hayashi K; Kubo H; Kanadani T; Harada M; Yogo T J Colloid Interface Sci; 2017 Apr; 492():127-135. PubMed ID: 28086116 [TBL] [Abstract][Full Text] [Related]
9. Long circulating chitosan/PEG blended PLGA nanoparticle for tumor drug delivery. Parveen S; Sahoo SK Eur J Pharmacol; 2011 Nov; 670(2-3):372-83. PubMed ID: 21951969 [TBL] [Abstract][Full Text] [Related]
10. Tumor accumulation of NIR fluorescent PEG-PLA nanoparticles: impact of particle size and human xenograft tumor model. Schädlich A; Caysa H; Mueller T; Tenambergen F; Rose C; Göpferich A; Kuntsche J; Mäder K ACS Nano; 2011 Nov; 5(11):8710-20. PubMed ID: 21970766 [TBL] [Abstract][Full Text] [Related]
12. In vitro uptake of amphiphilic, hydrogel nanoparticles by J774A.1 cells. Missirlis D; Hubbell JA J Biomed Mater Res A; 2010 Jun; 93(4):1557-65. PubMed ID: 20014289 [TBL] [Abstract][Full Text] [Related]
13. Free paclitaxel loaded PEGylated-paclitaxel nanoparticles: preparation and comparison with other paclitaxel systems in vitro and in vivo. Lu J; Chuan X; Zhang H; Dai W; Wang X; Wang X; Zhang Q Int J Pharm; 2014 Aug; 471(1-2):525-35. PubMed ID: 24858391 [TBL] [Abstract][Full Text] [Related]
14. Overcoming the polyethylene glycol dilemma via pathological environment-sensitive change of the surface property of nanoparticles for cellular entry. Hama S; Itakura S; Nakai M; Nakayama K; Morimoto S; Suzuki S; Kogure K J Control Release; 2015 May; 206():67-74. PubMed ID: 25770398 [TBL] [Abstract][Full Text] [Related]
15. Conjugated oligoelectrolyte-polyhedral oligomeric silsesquioxane loaded pH-responsive nanoparticles for targeted fluorescence imaging of cancer cell nucleus. Ding D; Pu KY; Li K; Liu B Chem Commun (Camb); 2011 Sep; 47(35):9837-9. PubMed ID: 21808781 [TBL] [Abstract][Full Text] [Related]
16. Organosilane and Polyethylene Glycol Functionalized Magnetic Mesoporous Silica Nanoparticles as Carriers for CpG Immunotherapy In Vitro and In Vivo. Zheng H; Wen S; Zhang Y; Sun Z PLoS One; 2015; 10(10):e0140265. PubMed ID: 26451735 [TBL] [Abstract][Full Text] [Related]
17. Size and Surface Properties of Functionalized Organosilica Particles Impact Cell-Particle Interactions Including Mitochondrial Activity. Nakamura J; Shiohama Y; Röth D; Haruta T; Yamashita Y; Mitsuzono T; Mochizuki C; Kalkum M; Nakamura M ACS Appl Mater Interfaces; 2024 Jun; 16(24):30980-30996. PubMed ID: 38857433 [TBL] [Abstract][Full Text] [Related]
18. Effect of PEG conformation and particle size on the cellular uptake efficiency of nanoparticles with the HepG2 cells. Hu Y; Xie J; Tong YW; Wang CH J Control Release; 2007 Mar; 118(1):7-17. PubMed ID: 17241684 [TBL] [Abstract][Full Text] [Related]
19. Bionano Interactions of Organosilica Nanoparticles with Myeloid Derived Immune Cells. Henderson E; Wilson K; Huynh G; Plebanski M; Corrie S ACS Appl Mater Interfaces; 2024 Aug; 16(33):43329-43340. PubMed ID: 39109853 [TBL] [Abstract][Full Text] [Related]
20. Novel anti-tumor strategy: PEG-hydroxycamptothecin conjugate loaded transferrin-PEG-nanoparticles. Hong M; Zhu S; Jiang Y; Tang G; Sun C; Fang C; Shi B; Pei Y J Control Release; 2010 Jan; 141(1):22-9. PubMed ID: 19735683 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]