These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
266 related articles for article (PubMed ID: 25630277)
1. Injectable hybrid hydrogels of hyaluronic Acid crosslinked by well-defined synthetic polycations: preparation and characterization in vitro and in vivo. Cross D; Jiang X; Ji W; Han W; Wang C Macromol Biosci; 2015 May; 15(5):668-81. PubMed ID: 25630277 [TBL] [Abstract][Full Text] [Related]
2. A novel biocompatible hyaluronic acid-chitosan hybrid hydrogel for osteoarthrosis therapy. Kaderli S; Boulocher C; Pillet E; Watrelot-Virieux D; Rougemont AL; Roger T; Viguier E; Gurny R; Scapozza L; Jordan O Int J Pharm; 2015 Apr; 483(1-2):158-68. PubMed ID: 25666331 [TBL] [Abstract][Full Text] [Related]
3. An injectable hyaluronic acid-tyramine hydrogel system for protein delivery. Lee F; Chung JE; Kurisawa M J Control Release; 2009 Mar; 134(3):186-93. PubMed ID: 19121348 [TBL] [Abstract][Full Text] [Related]
4. Synthesis, physicochemical, rheological and in-vitro characterization of double-crosslinked hyaluronic acid hydrogels containing dexamethasone and PLGA/dexamethasone nanoparticles as hybrid systems for specific medical applications. Mousavi Nejad Z; Torabinejad B; Davachi SM; Zamanian A; Saeedi Garakani S; Najafi F; Nezafati N Int J Biol Macromol; 2019 Apr; 126():193-208. PubMed ID: 30583002 [TBL] [Abstract][Full Text] [Related]
5. Synthesis, characterization, and application of reversible PDLLA-PEG-PDLLA copolymer thermogels in vitro and in vivo. Shi K; Wang YL; Qu Y; Liao JF; Chu BY; Zhang HP; Luo F; Qian ZY Sci Rep; 2016 Jan; 6():19077. PubMed ID: 26752008 [TBL] [Abstract][Full Text] [Related]
6. Four-arm PEG cross-linked hyaluronic acid hydrogels containing PEGylated apoptotic TRAIL protein for treating pancreatic cancer. Byeon HJ; Choi SH; Choi JS; Kim I; Shin BS; Lee ES; Park ES; Lee KC; Youn YS Acta Biomater; 2014 Jan; 10(1):142-50. PubMed ID: 24021228 [TBL] [Abstract][Full Text] [Related]
7. Monopotassium phosphate-reinforced in situ forming injectable hyaluronic acid hydrogels for subcutaneous injection. Seo JH; Lee SY; Kim S; Yang M; Jeong DI; Hwang C; Kim MH; Kim HJ; Lee J; Lee K; Kim DD; Cho HJ Int J Biol Macromol; 2020 Nov; 163():2134-2144. PubMed ID: 32946941 [TBL] [Abstract][Full Text] [Related]
9. Preparation of a hyaluronic acid hydrogel through polyion complex formation using cationic polylactide-based microspheres as a biodegradable cross-linking agent. Arimura H; Ouchi T; Kishida A; Ohya Y J Biomater Sci Polym Ed; 2005; 16(11):1347-58. PubMed ID: 16370238 [TBL] [Abstract][Full Text] [Related]
10. Injectable biodegradable hybrid hydrogels based on thiolated collagen and oligo(acryloyl carbonate)-poly(ethylene glycol)-oligo(acryloyl carbonate) copolymer for functional cardiac regeneration. Xu G; Wang X; Deng C; Teng X; Suuronen EJ; Shen Z; Zhong Z Acta Biomater; 2015 Mar; 15():55-64. PubMed ID: 25545323 [TBL] [Abstract][Full Text] [Related]
11. Injectable hydrogels based on the hyaluronic acid and poly (γ-glutamic acid) for controlled protein delivery. Ma X; Xu T; Chen W; Qin H; Chi B; Ye Z Carbohydr Polym; 2018 Jan; 179():100-109. PubMed ID: 29111032 [TBL] [Abstract][Full Text] [Related]
13. In situ cross-linkable hydrogel of hyaluronan produced via copper-free click chemistry. Takahashi A; Suzuki Y; Suhara T; Omichi K; Shimizu A; Hasegawa K; Kokudo N; Ohta S; Ito T Biomacromolecules; 2013 Oct; 14(10):3581-8. PubMed ID: 24004342 [TBL] [Abstract][Full Text] [Related]
14. Hyaluronic acid-based antibacterial hydrogels constructed by a hybrid crosslinking strategy for pacemaker pocket infection prevention. Dong Q; Zhong X; Zhang Y; Bao B; Liu L; Bao H; Bao C; Cheng X; Zhu L; Lin Q Carbohydr Polym; 2020 Oct; 245():116525. PubMed ID: 32718629 [TBL] [Abstract][Full Text] [Related]
15. Effects of cross-linking molecular weights in a hyaluronic acid-poly(ethylene oxide) hydrogel network on its properties. Noh I; Kim GW; Choi YJ; Kim MS; Park Y; Lee KB; Kim IS; Hwang SJ; Tae G Biomed Mater; 2006 Sep; 1(3):116-23. PubMed ID: 18458391 [TBL] [Abstract][Full Text] [Related]
16. Influence of viscoelastic properties of an hyaluronic acid-based hydrogel on viability of mesenchymal stem cells. Eddhahak A; Zidi M Biomed Mater Eng; 2015; 26(3-4):103-14. PubMed ID: 26684883 [TBL] [Abstract][Full Text] [Related]
17. Biomaterials from ultrasonication-induced silk fibroin-hyaluronic acid hydrogels. Hu X; Lu Q; Sun L; Cebe P; Wang X; Zhang X; Kaplan DL Biomacromolecules; 2010 Nov; 11(11):3178-88. PubMed ID: 20942397 [TBL] [Abstract][Full Text] [Related]
18. Biomineralized biomimetic organic/inorganic hybrid hydrogels based on hyaluronic acid and poloxamer. Huh HW; Zhao L; Kim SY Carbohydr Polym; 2015 Aug; 126():130-40. PubMed ID: 25933531 [TBL] [Abstract][Full Text] [Related]
19. Characterization of low-molecular-weight hyaluronic acid-based hydrogel and differential stem cell responses in the hydrogel microenvironments. Kim J; Park Y; Tae G; Lee KB; Hwang CM; Hwang SJ; Kim IS; Noh I; Sun K J Biomed Mater Res A; 2009 Mar; 88(4):967-75. PubMed ID: 18384163 [TBL] [Abstract][Full Text] [Related]
20. Hyaluronic acid/mildly crosslinked alginate hydrogel as an injectable tissue adhesion barrier. Na SY; Oh SH; Song KS; Lee JH J Mater Sci Mater Med; 2012 Sep; 23(9):2303-13. PubMed ID: 22661246 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]