These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
146 related articles for article (PubMed ID: 25630300)
1. Biomimetic surface modification of polyurethane with phospholipids grafted carbon nanotubes. Tan D; Liu L; Li Z; Fu Q J Biomed Mater Res A; 2015 Aug; 103(8):2711-9. PubMed ID: 25630300 [TBL] [Abstract][Full Text] [Related]
2. Biomimetic PEGylation of carbon nanotubes through surface-initiated RAFT polymerization. Shi Y; Zeng G; Xu D; Liu M; Wang K; Li Z; Fu L; Zhang Q; Zhang X; Wei Y Mater Sci Eng C Mater Biol Appl; 2017 Nov; 80():404-410. PubMed ID: 28866181 [TBL] [Abstract][Full Text] [Related]
3. Blood compatibility of polyurethane surface grafted copolymerization with sulfobetaine monomer. Jiang Y; Rongbing B; Ling T; Jian S; Sicong L Colloids Surf B Biointerfaces; 2004 Jul; 36(1):27-33. PubMed ID: 15261020 [TBL] [Abstract][Full Text] [Related]
4. 2-methoxyethylacrylate modified polyurethane membrane and its blood compatibility. Tian X; Qiu YR Prog Biophys Mol Biol; 2019 Nov; 148():39-46. PubMed ID: 29079209 [TBL] [Abstract][Full Text] [Related]
5. Defect-free surface modification methods for solubility-tunable carbon nanotubes. Lee HD; Yoo BM; Lee TH; Park HB J Colloid Interface Sci; 2018 Jan; 509():307-317. PubMed ID: 28918373 [TBL] [Abstract][Full Text] [Related]
6. Effects of oligoethylene oxide monoalkyl(aryl) alcohol ether grafting on the surface properties and blood compatibility of a polyurethane. Lim F; Yu XH; Cooper SL Biomaterials; 1993 Jun; 14(7):537-45. PubMed ID: 8329527 [TBL] [Abstract][Full Text] [Related]
7. Reactive polyurethane carbon nanotube foams and their interactions with osteoblasts. Verdejo R; Jell G; Safinia L; Bismarck A; Stevens MM; Shaffer MS J Biomed Mater Res A; 2009 Jan; 88(1):65-73. PubMed ID: 18260133 [TBL] [Abstract][Full Text] [Related]
8. Improving the blood compatibility of polyurethane using carbon nanotubes as fillers and its implications to cardiovascular surgery. Meng J; Kong H; Xu HY; Song L; Wang CY; Xie SS J Biomed Mater Res A; 2005 Aug; 74(2):208-14. PubMed ID: 15962271 [TBL] [Abstract][Full Text] [Related]
9. Adsorption of proteins onto poly(ether urethane) with a phosphorylcholine moiety and influence of preadsorbed phospholipid. van der Heiden AP; Willems GM; Lindhout T; Pijpers AP; Koole LH J Biomed Mater Res; 1998 May; 40(2):195-203. PubMed ID: 9549614 [TBL] [Abstract][Full Text] [Related]
10. Efficiently stabilized spherical vaterite CaCO3 crystals by carbon nanotubes in biomimetic mineralization. Li W; Gao C Langmuir; 2007 Apr; 23(8):4575-82. PubMed ID: 17358086 [TBL] [Abstract][Full Text] [Related]
11. Platelet adhesion on the gradient surfaces grafted with phospholipid polymer. Iwasaki Y; Ishihara K; Nakabayashi N; Khang G; Jeon JH; Lee JW; Lee HB J Biomater Sci Polym Ed; 1998; 9(8):801-16. PubMed ID: 9724895 [TBL] [Abstract][Full Text] [Related]
12. Synthesis and surface properties of polyurethane end-capped with hybrid hydrocarbon/fluorocarbon double-chain phospholipid. Li J; Zhang Y; Yang J; Tan H; Li J; Fu Q J Biomed Mater Res A; 2013 May; 101(5):1362-72. PubMed ID: 23077090 [TBL] [Abstract][Full Text] [Related]
13. Fabrication and characterization of hyperbranched polyglycerol modified carbon nanotubes through the host-guest interactions. Huang H; Liu M; Jiang R; Chen J; Huang Q; Wen Y; Tian J; Zhou N; Zhang X; Wei Y Mater Sci Eng C Mater Biol Appl; 2018 Oct; 91():458-465. PubMed ID: 30033277 [TBL] [Abstract][Full Text] [Related]
14. Polyurethane foams electrophoretically coated with carbon nanotubes for tissue engineering scaffolds. Zawadzak E; Bil M; Ryszkowska J; Nazhat SN; Cho J; Bretcanu O; Roether JA; Boccaccini AR Biomed Mater; 2009 Feb; 4(1):015008. PubMed ID: 19020345 [TBL] [Abstract][Full Text] [Related]
15. Enhanced blood compatibility of polyurethane functionalized with sulfobetaine. Yuan J; Lin S; Shen J Colloids Surf B Biointerfaces; 2008 Oct; 66(1):90-5. PubMed ID: 18620851 [TBL] [Abstract][Full Text] [Related]
16. Characteristics of crosslinked blends of Pellethene and multiblock polyurethanes containing phospholipid. Yoo HJ; Kim HD Biomaterials; 2005 Jun; 26(16):2877-86. PubMed ID: 15603783 [TBL] [Abstract][Full Text] [Related]
17. Protein adsorption and platelet adhesion onto polyurethane grafted with methoxy-poly(ethylene glycol) methacrylate by plasma technique. Fujimoto K; Inoue H; Ikada Y J Biomed Mater Res; 1993 Dec; 27(12):1559-67. PubMed ID: 8113244 [TBL] [Abstract][Full Text] [Related]
18. Hemocompatibilty of new ionic polyurethanes: influence of carboxylic group insertion modes. Poussard L; Burel F; Couvercelle JP; Merhi Y; Tabrizian M; Bunel C Biomaterials; 2004 Aug; 25(17):3473-83. PubMed ID: 15020121 [TBL] [Abstract][Full Text] [Related]
19. Modification of poly(ether urethane) with fluorinated phosphorylcholine polyurethane for improvement of the blood compatibility. Tan D; Zhang X; Li J; Tan H; Fu Q J Biomed Mater Res A; 2012 Feb; 100(2):380-7. PubMed ID: 22083794 [TBL] [Abstract][Full Text] [Related]
20. Dispersing carbon nanotubes by chiral network surfactants. Lin P; Cong Y; Zhang B ACS Appl Mater Interfaces; 2015 Apr; 7(12):6724-32. PubMed ID: 25789867 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]