BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

96 related articles for article (PubMed ID: 25630510)

  • 1. Influence of ceramic disk material, surface hemispheres, and SBF volume on in vitro mineralization.
    Urquia Edreira ER; Wolke JG; Jansen JA; van den Beucken JJ
    J Biomed Mater Res A; 2015 Aug; 103(8):2740-6. PubMed ID: 25630510
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Substrate geometry directs the in vitro mineralization of calcium phosphate ceramics.
    Bianchi M; Urquia Edreira ER; Wolke JG; Birgani ZT; Habibovic P; Jansen JA; Tampieri A; Marcacci M; Leeuwenburgh SC; van den Beucken JJ
    Acta Biomater; 2014 Feb; 10(2):661-9. PubMed ID: 24184857
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Effect of apatite formation of biphasic calcium phosphate ceramic (BCP) on osteoblastogenesis using simulated body fluid (SBF) with or without bovine serum albumin (BSA).
    Huang L; Zhou B; Wu H; Zheng L; Zhao J
    Mater Sci Eng C Mater Biol Appl; 2017 Jan; 70(Pt 2):955-961. PubMed ID: 27772726
    [TBL] [Abstract][Full Text] [Related]  

  • 4. In situ hydroxyapatite nanofiber growth on calcium borate silicate ceramics in SBF and its structural characteristics.
    Pu Y; Huang Y; Qi S; Chen C; Seo HJ
    Mater Sci Eng C Mater Biol Appl; 2015 Oct; 55():126-30. PubMed ID: 26117746
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Influence of TiO2 and Ag2O addition on tricalcium phosphate ceramics.
    Seeley Z; Bandyopadhyay A; Bose S
    J Biomed Mater Res A; 2007 Jul; 82(1):113-21. PubMed ID: 17269142
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Nanoscale surface characterization of biphasic calcium phosphate, with comparisons to calcium hydroxyapatite and β-tricalcium phosphate bioceramics.
    França R; Samani TD; Bayade G; Yahia L; Sacher E
    J Colloid Interface Sci; 2014 Apr; 420():182-8. PubMed ID: 24559717
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Effects of calcium phosphate composition in sputter coatings on in vitro and in vivo performance.
    Urquia Edreira ER; Wolke JG; Aldosari AA; Al-Johany SS; Anil S; Jansen JA; van den Beucken JJ
    J Biomed Mater Res A; 2015 Jan; 103(1):300-10. PubMed ID: 24659523
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A comparative study of calcium phosphate formation on bioceramics in vitro and in vivo.
    Xin R; Leng Y; Chen J; Zhang Q
    Biomaterials; 2005 Nov; 26(33):6477-86. PubMed ID: 15992923
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Transformation of biphasic calcium phosphate ceramics in vivo: ultrastructural and physicochemical characterization.
    Daculsi G; LeGeros RZ; Nery E; Lynch K; Kerebel B
    J Biomed Mater Res; 1989 Aug; 23(8):883-94. PubMed ID: 2777831
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Evaluation of apatite ceramics containing alpha-tricalcium phosphate by immersion in simulated body fluid.
    Hirakata LM; Kon M; Asaoka K
    Biomed Mater Eng; 2003; 13(3):247-59. PubMed ID: 12883174
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Surface reactions of calcium phosphate ceramics to various solutions.
    Hyakuna K; Yamamuro T; Kotoura Y; Oka M; Nakamura T; Kitsugi T; Kokubo T; Kushitani H
    J Biomed Mater Res; 1990 Apr; 24(4):471-88. PubMed ID: 2347873
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Electrical polarization of plasma-spray-hydroxyapatite coatings for improvement of osteoconduction of implants.
    Kato R; Nakamura S; Katayama K; Yamashita K
    J Biomed Mater Res A; 2005 Sep; 74(4):652-8. PubMed ID: 16021619
    [TBL] [Abstract][Full Text] [Related]  

  • 13. In vitro degradation, bioactivity, and cytocompatibility of calcium silicate, dimagnesium silicate, and tricalcium phosphate bioceramics.
    Ni S; Chang J
    J Biomater Appl; 2009 Aug; 24(2):139-58. PubMed ID: 18801892
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Enhanced effect of β-tricalcium phosphate phase on neovascularization of porous calcium phosphate ceramics: in vitro and in vivo evidence.
    Chen Y; Wang J; Zhu XD; Tang ZR; Yang X; Tan YF; Fan YJ; Zhang XD
    Acta Biomater; 2015 Jan; 11():435-48. PubMed ID: 25246313
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Osteoprecursor cell response to strontium-containing hydroxyapatite ceramics.
    Xue W; Moore JL; Hosick HL; Bose S; Bandyopadhyay A; Lu WW; Cheung KM; Luk KD
    J Biomed Mater Res A; 2006 Dec; 79(4):804-14. PubMed ID: 16886220
    [TBL] [Abstract][Full Text] [Related]  

  • 16. [Production and characterization of a glass-ceramic biomaterial and in vitro and in vivo evaluation of its biological effects].
    Ceyhan T; Günay V; Capoğlu A; Sayrak H; Karaca C
    Acta Orthop Traumatol Turc; 2007; 41(4):307-13. PubMed ID: 18180562
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Mechanism of calcium disilicide-induced calcification of crystalline silicon surfaces in simulated body fluid under zero bias.
    Seregin VV; Coffer JL
    J Biomed Mater Res A; 2008 Oct; 87(1):15-24. PubMed ID: 18080303
    [TBL] [Abstract][Full Text] [Related]  

  • 18. 3D microenvironment as essential element for osteoinduction by biomaterials.
    Habibovic P; Yuan H; van der Valk CM; Meijer G; van Blitterswijk CA; de Groot K
    Biomaterials; 2005 Jun; 26(17):3565-75. PubMed ID: 15621247
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Influence of strontium on the synthesis and surface properties of biphasic calcium phosphate (BCP) bioceramics.
    Kanchana P; Sekar C
    J Appl Biomater Biomech; 2010; 8(3):153-8. PubMed ID: 21337306
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Sol-gel synthesis and characterization of macroporous calcium phosphate bioceramics containing microporosity.
    Fellah BH; Layrolle P
    Acta Biomater; 2009 Feb; 5(2):735-42. PubMed ID: 18851931
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.