BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

295 related articles for article (PubMed ID: 25630602)

  • 41. Transient exposure of human myoblasts to tumor necrosis factor-alpha inhibits serum and insulin-like growth factor-I stimulated protein synthesis.
    Frost RA; Lang CH; Gelato MC
    Endocrinology; 1997 Oct; 138(10):4153-9. PubMed ID: 9322924
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Direct effects of tumor necrosis factor alpha (TNF-alpha) on murine skeletal muscle cell lines. Bimodal effects on protein metabolism.
    Alvarez B; Quinn LS; Busquets S; López-Soriano FJ; Argilés JM
    Eur Cytokine Netw; 2001; 12(3):399-410. PubMed ID: 11566620
    [TBL] [Abstract][Full Text] [Related]  

  • 43. The influence of serum-free culture conditions on skeletal muscle differentiation in a tissue-engineered model.
    Gawlitta D; Boonen KJ; Oomens CW; Baaijens FP; Bouten CV
    Tissue Eng Part A; 2008 Jan; 14(1):161-71. PubMed ID: 18333814
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Static magnetic fields enhance skeletal muscle differentiation in vitro by improving myoblast alignment.
    Coletti D; Teodori L; Albertini MC; Rocchi M; Pristerà A; Fini M; Molinaro M; Adamo S
    Cytometry A; 2007 Oct; 71(10):846-56. PubMed ID: 17694560
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Skeletal muscle cell activation by low-energy laser irradiation: a role for the MAPK/ERK pathway.
    Shefer G; Oron U; Irintchev A; Wernig A; Halevy O
    J Cell Physiol; 2001 Apr; 187(1):73-80. PubMed ID: 11241351
    [TBL] [Abstract][Full Text] [Related]  

  • 46. ERK2 is required for efficient terminal differentiation of skeletal myoblasts.
    Li J; Johnson SE
    Biochem Biophys Res Commun; 2006 Jul; 345(4):1425-33. PubMed ID: 16729973
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Expression changes in human skeletal muscle miRNAs following 10 days of bed rest in young healthy males.
    Režen T; Kovanda A; Eiken O; Mekjavic IB; Rogelj B
    Acta Physiol (Oxf); 2014 Mar; 210(3):655-66. PubMed ID: 24410893
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Breed-dependent microRNA expression in the primary culture of skeletal muscle cells subjected to myogenic differentiation.
    Sadkowski T; Ciecierska A; Oprządek J; Balcerek E
    BMC Genomics; 2018 Jan; 19(1):109. PubMed ID: 29390965
    [TBL] [Abstract][Full Text] [Related]  

  • 49. MicroRNA-1 and microRNA-133a expression are decreased during skeletal muscle hypertrophy.
    McCarthy JJ; Esser KA
    J Appl Physiol (1985); 2007 Jan; 102(1):306-13. PubMed ID: 17008435
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Stabilin-2 modulates the efficiency of myoblast fusion during myogenic differentiation and muscle regeneration.
    Park SY; Yun Y; Lim JS; Kim MJ; Kim SY; Kim JE; Kim IS
    Nat Commun; 2016 Mar; 7():10871. PubMed ID: 26972991
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Growth factor and cytokine interactions in myogenesis. Part I. The effect of TNF-alpha and IFN-gamma on IGF-I-dependent differentiation in mouse C2C12 myogenic cells.
    Wieteska-Skrzeczyńska W; Grzelkowska-Kowalczyk K; Tokarska J; Grabiec K
    Pol J Vet Sci; 2011; 14(3):417-24. PubMed ID: 21957736
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Microrna-221 and microrna-222 modulate differentiation and maturation of skeletal muscle cells.
    Cardinali B; Castellani L; Fasanaro P; Basso A; Alemà S; Martelli F; Falcone G
    PLoS One; 2009 Oct; 4(10):e7607. PubMed ID: 19859555
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Transforming growth factor-beta-regulated miR-24 promotes skeletal muscle differentiation.
    Sun Q; Zhang Y; Yang G; Chen X; Zhang Y; Cao G; Wang J; Sun Y; Zhang P; Fan M; Shao N; Yang X
    Nucleic Acids Res; 2008 May; 36(8):2690-9. PubMed ID: 18353861
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Implication of anti-inflammatory macrophages in regenerative moto-neuritogenesis: promotion of myoblast migration and neural chemorepellent semaphorin 3A expression in injured muscle.
    Sakaguchi S; Shono J; Suzuki T; Sawano S; Anderson JE; Do MK; Ohtsubo H; Mizunoya W; Sato Y; Nakamura M; Furuse M; Yamada K; Ikeuchi Y; Tatsumi R
    Int J Biochem Cell Biol; 2014 Sep; 54():272-85. PubMed ID: 24886696
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Characterization of proliferating human skeletal muscle-derived cells in vitro: differential modulation of myoblast markers by TGF-beta2.
    Stewart JD; Masi TL; Cumming AE; Molnar GM; Wentworth BM; Sampath K; McPherson JM; Yaeger PC
    J Cell Physiol; 2003 Jul; 196(1):70-8. PubMed ID: 12767042
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Paracrine release of insulin-like growth factor 1 from a bioengineered tissue stimulates skeletal muscle growth in vitro.
    Shansky J; Creswick B; Lee P; Wang X; Vandenburgh H
    Tissue Eng; 2006 Jul; 12(7):1833-41. PubMed ID: 16889513
    [TBL] [Abstract][Full Text] [Related]  

  • 57. MicroRNA-27a promotes myoblast proliferation by targeting myostatin.
    Huang Z; Chen X; Yu B; He J; Chen D
    Biochem Biophys Res Commun; 2012 Jun; 423(2):265-9. PubMed ID: 22640741
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Tumor necrosis factor-alpha (TNF-alpha) stimulates chemotactic response in mouse myogenic cells.
    Torrente Y; El Fahime E; Caron NJ; Del Bo R; Belicchi M; Pisati F; Tremblay JP; Bresolin N
    Cell Transplant; 2003; 12(1):91-100. PubMed ID: 12693669
    [TBL] [Abstract][Full Text] [Related]  

  • 59. C2 skeletal myoblast survival, death, proliferation and differentiation: regulation by Adra1d.
    Saini A; Al-Shanti N; Stewart C
    Cell Physiol Biochem; 2010; 25(2-3):253-62. PubMed ID: 20110686
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Effect of microRNA modulation on bioartificial muscle function.
    Rhim C; Cheng CS; Kraus WE; Truskey GA
    Tissue Eng Part A; 2010 Dec; 16(12):3589-97. PubMed ID: 20670163
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 15.