These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
165 related articles for article (PubMed ID: 25630623)
1. Systematic screening of different surface modifiers for the production of physically stable nanosuspensions. Lestari ML; Müller RH; Möschwitzer JP J Pharm Sci; 2015 Mar; 104(3):1128-40. PubMed ID: 25630623 [TBL] [Abstract][Full Text] [Related]
2. Systematic Screening of Different Surface Modifiers for the Production of Physically Stable Nanosuspensions. Lestari MLAD; Müller RH; Möschwitzer JP J Pharm Sci; 2015 Mar; 104(3):1128-1140. PubMed ID: 28756835 [TBL] [Abstract][Full Text] [Related]
3. Is the combination of cellulosic polymers and anionic surfactants a good strategy for ensuring physical stability of BCS Class II drug nanosuspensions? Bilgili E; Li M; Afolabi A Pharm Dev Technol; 2016; 21(4):499-510. PubMed ID: 25774989 [TBL] [Abstract][Full Text] [Related]
4. Thermodynamics of aggregate formation between a non-ionic polymer and ionic surfactants: An isothermal titration calorimetric study. Patel SG; Bummer PM Int J Pharm; 2017 Jan; 516(1-2):131-143. PubMed ID: 27789368 [TBL] [Abstract][Full Text] [Related]
5. Identifying the correlation between drug/stabilizer properties and critical quality attributes (CQAs) of nanosuspension formulation prepared by wet media milling technology. George M; Ghosh I Eur J Pharm Sci; 2013 Jan; 48(1-2):142-52. PubMed ID: 23085547 [TBL] [Abstract][Full Text] [Related]
6. Spray drying of API nanosuspensions: Importance of drying temperature, type and content of matrix former and particle size for successful formulation and process development. Czyz S; Wewers M; Finke JH; Kwade A; van Eerdenbrugh B; Juhnke M; Bunjes H Eur J Pharm Biopharm; 2020 Jul; 152():63-71. PubMed ID: 32376369 [TBL] [Abstract][Full Text] [Related]
7. Study on formability of solid nanosuspensions during nanodispersion and solidification: I. Novel role of stabilizer/drug property. Yue PF; Li Y; Wan J; Yang M; Zhu WF; Wang CH Int J Pharm; 2013 Sep; 454(1):269-77. PubMed ID: 23830942 [TBL] [Abstract][Full Text] [Related]
8. Miconazole nanosuspensions: Influence of formulation variables on particle size reduction and physical stability. Cerdeira AM; Mazzotti M; Gander B Int J Pharm; 2010 Aug; 396(1-2):210-8. PubMed ID: 20600732 [TBL] [Abstract][Full Text] [Related]
9. Multi-faceted Characterization of Wet-milled Griseofulvin Nanosuspensions for Elucidation of Aggregation State and Stabilization Mechanisms. Li M; Alvarez P; Orbe P; Bilgili E AAPS PharmSciTech; 2018 May; 19(4):1789-1801. PubMed ID: 29603084 [TBL] [Abstract][Full Text] [Related]
10. Development of a Robust Method for Simultaneous Quantification of Polymer (HPMC) and Surfactant (Dodecyl β-D-Maltoside) in Nanosuspensions. Patel SG; Bummer PM AAPS PharmSciTech; 2016 Oct; 17(5):1182-91. PubMed ID: 26634749 [TBL] [Abstract][Full Text] [Related]
11. The Scalability of Wet Ball Milling for The Production of Nanosuspensions. Lestari MLAD; Müller RH; Möschwitzer JP Pharm Nanotechnol; 2019; 7(2):147-161. PubMed ID: 30931866 [TBL] [Abstract][Full Text] [Related]
12. Freeze drying of nanosuspensions, 2: the role of the critical formulation temperature on stability of drug nanosuspensions and its practical implication on process design. Beirowski J; Inghelbrecht S; Arien A; Gieseler H J Pharm Sci; 2011 Oct; 100(10):4471-81. PubMed ID: 21607957 [TBL] [Abstract][Full Text] [Related]
13. Enhanced physical stabilization of fenofibrate nanosuspensions via wet co-milling with a superdisintegrant and an adsorbing polymer. Azad M; Afolabi A; Bhakay A; Leonardi J; Davé R; Bilgili E Eur J Pharm Biopharm; 2015 Aug; 94():372-85. PubMed ID: 26079832 [TBL] [Abstract][Full Text] [Related]
14. Enhance the dissolution rate and oral bioavailability of pranlukast by preparing nanosuspensions with high-pressure homogenizing method. Wang L; Hao Y; Liu N; Ma M; Yin Z; Zhang X Drug Dev Ind Pharm; 2012 Nov; 38(11):1381-9. PubMed ID: 22300415 [TBL] [Abstract][Full Text] [Related]
15. Physical stability of nanosuspensions: investigation of the role of stabilizers on Ostwald ripening. Verma S; Kumar S; Gokhale R; Burgess DJ Int J Pharm; 2011 Mar; 406(1-2):145-52. PubMed ID: 21185926 [TBL] [Abstract][Full Text] [Related]
16. Nano-scale and molecular-level understanding of wet-milled indomethacin/poloxamer 407 nanosuspension with TEM, suspended-state NMR, and Raman measurements. Kuroiwa Y; Higashi K; Ueda K; Yamamoto K; Moribe K Int J Pharm; 2018 Feb; 537(1-2):30-39. PubMed ID: 29246438 [TBL] [Abstract][Full Text] [Related]
17. Preparation and characterization of hydroxypropyl methyl cellulose films containing stable BCS Class II drug nanoparticles for pharmaceutical applications. Sievens-Figueroa L; Bhakay A; Jerez-Rozo JI; Pandya N; Romañach RJ; Michniak-Kohn B; Iqbal Z; Bilgili E; Davé RN Int J Pharm; 2012 Feb; 423(2):496-508. PubMed ID: 22178619 [TBL] [Abstract][Full Text] [Related]
18. Comparative study on stabilizing ability of food protein, non-ionic surfactant and anionic surfactant on BCS type II drug carvedilol loaded nanosuspension: Physicochemical and pharmacokinetic investigation. Geng T; Banerjee P; Lu Z; Zoghbi A; Li T; Wang B Eur J Pharm Sci; 2017 Nov; 109():200-208. PubMed ID: 28811130 [TBL] [Abstract][Full Text] [Related]
19. Development of ascorbyl palmitate nanocrystals applying the nanosuspension technology. Teeranachaideekul V; Junyaprasert VB; Souto EB; Müller RH Int J Pharm; 2008 Apr; 354(1-2):227-34. PubMed ID: 18242898 [TBL] [Abstract][Full Text] [Related]
20. Synergistic effects of polymers and surfactants on depletion forces. Tulpar A; Tilton RD; Walz JY Langmuir; 2007 Apr; 23(8):4351-7. PubMed ID: 17316036 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]