These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

122 related articles for article (PubMed ID: 25630626)

  • 1. A model of the evolution of larval feeding rate in Drosophila driven by conflicting energy demands.
    Mueller LD; Barter TT
    Genetica; 2015 Feb; 143(1):93-100. PubMed ID: 25630626
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Evolution of increased larval competitive ability in Drosophila melanogaster without increased larval feeding rate.
    Sarangi M; Nagarajan A; Dey S; Bose J; Joshi A
    J Genet; 2016 Sep; 95(3):491-503. PubMed ID: 27659320
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The effects of adaptation to urea on feeding rates and growth in
    Bitner K; Rutledge GA; Kezos JN; Mueller LD
    Ecol Evol; 2021 Jul; 11(14):9516-9529. PubMed ID: 34306639
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Density-dependent selection in
    Venkitachalam S; Das S; Deep A; Joshi A
    J Genet; 2022; 101():. PubMed ID: 35129132
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Adaptation to larval crowding in Drosophila ananassae and Drosophila nasuta nasuta: increased larval competitive ability without increased larval feeding rate.
    Nagarajan A; Natarajan SB; Jayaram M; Thammanna A; Chari S; Bose J; Jois SV; Joshi A
    J Genet; 2016 Jun; 95(2):411-25. PubMed ID: 27350686
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A genetic polymorphism maintained by natural selection in a temporally varying environment.
    Borash DJ; Gibbs AG; Joshi A; Mueller LD
    Am Nat; 1998 Feb; 151(2):148-56. PubMed ID: 18811414
    [TBL] [Abstract][Full Text] [Related]  

  • 7. DENSITY-DEPENDENT NATURAL SELECTION IN DROSOPHILA: EVOLUTION OF GROWTH RATE AND BODY SIZE.
    Santos M; Borash DJ; Joshi A; Bounlutay N; Mueller LD
    Evolution; 1997 Apr; 51(2):420-432. PubMed ID: 28565346
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Evolutionary change in parasitoid resistance under crowded conditions in Drosophila melanogaster.
    Sanders AE; Scarborough C; Layen SJ; Kraaijeveld AR; Godfray HC
    Evolution; 2005 Jun; 59(6):1292-9. PubMed ID: 16050105
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Experimental evolution in Drosophila melanogaster: interaction of temperature and food quality selection regimes.
    Bochdanovits Z; de Jong G
    Evolution; 2003 Aug; 57(8):1829-36. PubMed ID: 14503624
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Evolution of pathogen-specific improved survivorship post-infection in populations of Drosophila melanogaster adapted to larval crowding.
    Kapila R; Kashyap M; Poddar S; Gangwal S; Prasad NGG
    PLoS One; 2021; 16(4):e0250055. PubMed ID: 33852596
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Environment-dependent trade-offs between ectoparasite resistance and larval competitive ability in the Drosophila-Macrocheles system.
    Luong LT; Polak M
    Heredity (Edinb); 2007 Dec; 99(6):632-40. PubMed ID: 17700633
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Evolution of behavior by density-dependent natural selection.
    Guo PZ; Mueller LD; Ayala FJ
    Proc Natl Acad Sci U S A; 1991 Dec; 88(23):10905-6. PubMed ID: 1961760
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Life-history consequences of adaptation to larval nutritional stress in Drosophila.
    Kolss M; Vijendravarma RK; Schwaller G; Kawecki TJ
    Evolution; 2009 Sep; 63(9):2389-401. PubMed ID: 19473389
    [TBL] [Abstract][Full Text] [Related]  

  • 14. EVOLUTIONARY LOSS OF LARVAL FEEDING: DEVELOPMENT, FORM AND FUNCTION IN A FACULTATIVELY FEEDING LARVA, BRISASTER LATIFRONS.
    Hart MW
    Evolution; 1996 Feb; 50(1):174-187. PubMed ID: 28568851
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Genetics analysis of larval foraging behavior in Drosophila funebris.
    Arizmendi C; Zuleta V; Ruiz-Dubreuil G; Godoy-Herrera R
    Behav Genet; 2008 Sep; 38(5):525-30. PubMed ID: 18661224
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Adaptive evolution of larvae and life cycles.
    McEdward LR
    Semin Cell Dev Biol; 2000 Dec; 11(6):403-9. PubMed ID: 11145868
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Turbulence induces metabolically costly behaviors and inhibits food capture in oyster larvae, causing net energy loss.
    Fuchs HL; Specht JA; Adams DK; Christman AJ
    J Exp Biol; 2017 Oct; 220(Pt 19):3419-3431. PubMed ID: 28978637
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Preparing Drosophila larvae for feeding assays.
    Shen P
    Cold Spring Harb Protoc; 2012 May; 2012(5):. PubMed ID: 22550300
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Spatial aggregation across ephemeral resource patches in insect communities: an adaptive response to natural enemies?
    Rohlfs M; Hoffmeister TS
    Oecologia; 2004 Aug; 140(4):654-61. PubMed ID: 15232730
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Acute and chronic effects of atmospheric oxygen on the feeding behavior of Drosophila melanogaster larvae.
    Farzin M; Albert T; Pierce N; VandenBrooks JM; Dodge T; Harrison JF
    J Insect Physiol; 2014 Sep; 68():23-9. PubMed ID: 25008193
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.