These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

103 related articles for article (PubMed ID: 25630958)

  • 1. Nanocellulose coupled flexible polypyrrole@graphene oxide composite paper electrodes with high volumetric capacitance.
    Wang Z; Tammela P; Strømme M; Nyholm L
    Nanoscale; 2015 Feb; 7(8):3418-23. PubMed ID: 25630958
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Freestanding nanocellulose-composite fibre reinforced 3D polypyrrole electrodes for energy storage applications.
    Wang Z; Tammela P; Zhang P; Huo J; Ericson F; Strømme M; Nyholm L
    Nanoscale; 2014 Nov; 6(21):13068-75. PubMed ID: 25248090
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Fabrication of Graphene/Polyaniline Composite Paper via In Situ Anodic Electropolymerization for High-Performance Flexible Electrode.
    Wang DW; Li F; Zhao J; Ren W; Chen ZG; Tan J; Wu ZS; Gentle I; Lu GQ; Cheng HM
    ACS Nano; 2009 Jul; 3(7):1745-52. PubMed ID: 19489559
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Surface Modified Nanocellulose Fibers Yield Conducting Polymer-Based Flexible Supercapacitors with Enhanced Capacitances.
    Wang Z; Carlsson DO; Tammela P; Hua K; Zhang P; Nyholm L; Strømme M
    ACS Nano; 2015 Jul; 9(7):7563-71. PubMed ID: 26083393
    [TBL] [Abstract][Full Text] [Related]  

  • 5. High capacitive performance of flexible and binder-free graphene-polypyrrole composite membrane based on in situ reduction of graphene oxide and self-assembly.
    Zhang J; Chen P; Oh BH; Chan-Park MB
    Nanoscale; 2013 Oct; 5(20):9860-6. PubMed ID: 23974163
    [TBL] [Abstract][Full Text] [Related]  

  • 6. All-solid-state flexible supercapacitors based on highly dispersed polypyrrole nanowire and reduced graphene oxide composites.
    Yu C; Ma P; Zhou X; Wang A; Qian T; Wu S; Chen Q
    ACS Appl Mater Interfaces; 2014 Oct; 6(20):17937-43. PubMed ID: 25247315
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Layered graphene oxide nanostructures with sandwiched conducting polymers as supercapacitor electrodes.
    Zhang LL; Zhao S; Tian XN; Zhao XS
    Langmuir; 2010 Nov; 26(22):17624-8. PubMed ID: 20961127
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Incorporating nanoporous polyaniline into layer-by-layer ionic liquid-carbon nanotube-graphene paper: towards freestanding flexible electrodes with improved supercapacitive performance.
    Sun Y; Fang Z; Wang C; Zhou A; Duan H
    Nanotechnology; 2015 Sep; 26(37):374002. PubMed ID: 26314327
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Layer-by-layer self-assembled multilayer films composed of graphene/polyaniline bilayers: high-energy electrode materials for supercapacitors.
    Sarker AK; Hong JD
    Langmuir; 2012 Aug; 28(34):12637-46. PubMed ID: 22866750
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Graphene-patched CNT/MnO2 nanocomposite papers for the electrode of high-performance flexible asymmetric supercapacitors.
    Jin Y; Chen H; Chen M; Liu N; Li Q
    ACS Appl Mater Interfaces; 2013 Apr; 5(8):3408-16. PubMed ID: 23488813
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Freestanding three-dimensional graphene/MnO2 composite networks as ultralight and flexible supercapacitor electrodes.
    He Y; Chen W; Li X; Zhang Z; Fu J; Zhao C; Xie E
    ACS Nano; 2013 Jan; 7(1):174-82. PubMed ID: 23249211
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Construction of flexible electrodes based on ternary polypyrrole@cobalt oxyhydroxide/cellulose fiber composite for supercapacitor.
    Yang S; Sun L; An X; Qian X
    Carbohydr Polym; 2020 Feb; 229():115455. PubMed ID: 31826476
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Freestanding graphene paper supported three-dimensional porous graphene-polyaniline nanocomposite synthesized by inkjet printing and in flexible all-solid-state supercapacitor.
    Chi K; Zhang Z; Xi J; Huang Y; Xiao F; Wang S; Liu Y
    ACS Appl Mater Interfaces; 2014 Sep; 6(18):16312-9. PubMed ID: 25180808
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Hierarchically nanoperforated graphene as a high performance electrode material for ultracapacitors.
    Mhamane D; Suryawanshi A; Unni SM; Rode C; Kurungot S; Ogale S
    Small; 2013 Aug; 9(16):2801-9. PubMed ID: 23606525
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Template-assisted low temperature synthesis of functionalized graphene for ultrahigh volumetric performance supercapacitors.
    Yan J; Wang Q; Wei T; Jiang L; Zhang M; Jing X; Fan Z
    ACS Nano; 2014 May; 8(5):4720-9. PubMed ID: 24730514
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Fabrication of Highly Flexible Hierarchical Polypyrrole/Carbon Nanotube on Eggshell Membranes for Supercapacitors.
    Alcaraz-Espinoza JJ; de Melo CP; de Oliveira HP
    ACS Omega; 2017 Jun; 2(6):2866-2877. PubMed ID: 31457622
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Effect of supercritical CO(2) on fabrication of free-standing hierarchical graphene oxide/carbon nanofiber/polypyrrole film and its electrochemical property.
    Xu S; Yang H; Wang K; Wang B; Xu Q
    Phys Chem Chem Phys; 2014 Apr; 16(16):7350-7. PubMed ID: 24623108
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A self-supported electrode for supercapacitors based on nanocellulose/multi-walled carbon nanotubes/polypyrrole composite.
    Lv P; Meng Y; Song L; Pang H; Liu W
    RSC Adv; 2020 Dec; 11(2):1109-1114. PubMed ID: 35423677
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Nanocellulose-based electrodes and separator toward sustainable and flexible all-solid-state supercapacitor.
    Ding Z; Yang X; Tang Y
    Int J Biol Macromol; 2023 Feb; 228():467-477. PubMed ID: 36572083
    [TBL] [Abstract][Full Text] [Related]  

  • 20. All-solid-state reduced graphene oxide supercapacitor with large volumetric capacitance and ultralong stability prepared by electrophoretic deposition method.
    Wang M; Duong le D; Mai NT; Kim S; Kim Y; Seo H; Kim YC; Jang W; Lee Y; Suhr J; Nam JD
    ACS Appl Mater Interfaces; 2015 Jan; 7(2):1348-54. PubMed ID: 25545033
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.