BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

66 related articles for article (PubMed ID: 25631016)

  • 1. High-throughput real-time analysis of cell oxygenation using intracellular oxygen-sensitive probes.
    Hynes J; Carey C
    Methods Mol Biol; 2015; 1264():203-17. PubMed ID: 25631016
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Cytotoxic effects of 109 reference compounds on rat H4IIE and human HepG2 hepatocytes. III: Mechanistic assays on oxygen consumption with MitoXpress and NAD(P)H production with Alamar Blue™.
    Schoonen WG; Stevenson JC; Westerink WM; Horbach GJ
    Toxicol In Vitro; 2012 Apr; 26(3):511-25. PubMed ID: 22261204
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Micro-scaffold array chip for upgrading cell-based high-throughput drug testing to 3D using benchtop equipment.
    Li X; Zhang X; Zhao S; Wang J; Liu G; Du Y
    Lab Chip; 2014 Feb; 14(3):471-81. PubMed ID: 24287736
    [TBL] [Abstract][Full Text] [Related]  

  • 4. High-Throughput Analysis of Mitochondrial Oxygen Consumption.
    Hynes J; Swiss RL; Will Y
    Methods Mol Biol; 2018; 1782():71-87. PubMed ID: 29850994
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Cell energy budget platform for assessment of cell metabolism.
    Papkovsky DB; Zhdanov AV
    Methods Mol Biol; 2015; 1265():333-48. PubMed ID: 25634285
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Fluorescence-Based Microplate Assays for In Vitro Assessment of Mitochondrial Toxicity, Metabolic Perturbation, and Cellular Oxygenation.
    Hynes J; Carey C; Will Y
    Curr Protoc Toxicol; 2016 Nov; 70():2.16.1-2.16.30. PubMed ID: 27801935
    [TBL] [Abstract][Full Text] [Related]  

  • 7. High-throughput analysis of mitochondrial oxygen consumption.
    Hynes J; Swiss RL; Will Y
    Methods Mol Biol; 2012; 810():59-72. PubMed ID: 22057560
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Comparison of the three optical platforms for measurement of cellular respiration.
    Kondrashina AV; Ogurtsov VI; Papkovsky DB
    Anal Biochem; 2015 Jan; 468():1-3. PubMed ID: 25233002
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Assessment of cellular oxygen gradients with a panel of phosphorescent oxygen-sensitive probes.
    Dmitriev RI; Zhdanov AV; Jasionek G; Papkovsky DB
    Anal Chem; 2012 Mar; 84(6):2930-8. PubMed ID: 22380020
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Kinetic analysis of local oxygenation and respiratory responses of mammalian cells using intracellular oxygen-sensitive probes and time-resolved fluorometry.
    Zhdanov AV; Dmitriev RI; Hynes J; Papkovsky DB
    Methods Enzymol; 2014; 542():183-207. PubMed ID: 24862267
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Contributions of glycolysis and oxidative phosphorylation to adenosine 5'-triphosphate production in AS-30D hepatoma cells.
    Nakashima RA; Paggi MG; Pedersen PL
    Cancer Res; 1984 Dec; 44(12 Pt 1):5702-6. PubMed ID: 6498833
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Spontaneous formation of highly functional three-dimensional multilayer from human hepatoma Hep G2 cells cultured on an oxygen-permeable polydimethylsiloxane membrane.
    Evenou F; Fujii T; Sakai Y
    Tissue Eng Part C Methods; 2010 Apr; 16(2):311-8. PubMed ID: 19563254
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Cell Energy Budget Platform for Multiparametric Assessment of Cell and Tissue Metabolism.
    Papkovsky DB; Zhdanov AV
    Methods Mol Biol; 2021; 2276():305-324. PubMed ID: 34060051
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Caveats and limitations of plate reader-based high-throughput kinetic measurements of intracellular calcium levels.
    Heusinkveld HJ; Westerink RH
    Toxicol Appl Pharmacol; 2011 Aug; 255(1):1-8. PubMed ID: 21684299
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Intracellular diffusion of oxygen and hypoxic sensing: role of mitochondrial respiration.
    Takahashi E; Sato M
    Adv Exp Med Biol; 2010; 669():213-7. PubMed ID: 20217352
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Low oxygen reduces the modulation to an oxidative phenotype in monolayer-expanded chondrocytes.
    Heywood HK; Lee DA
    J Cell Physiol; 2010 Jan; 222(1):248-53. PubMed ID: 19795395
    [TBL] [Abstract][Full Text] [Related]  

  • 17. [Several features of the oligomycin effect on phosphorylating oxidation of mitochondria at various states].
    Gorskaia IA; Kotel'nikova AV
    Biokhimiia; 1975; 40(5):1016-21. PubMed ID: 129166
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Assessment of respiration in isolated plant mitochondria using Clark-type electrodes.
    Jacoby RP; Millar AH; Taylor NL
    Methods Mol Biol; 2015; 1305():165-85. PubMed ID: 25910734
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Assessing Mitochondrial Bioenergetics in Isolated Mitochondria from Various Mouse Tissues Using Seahorse XF96 Analyzer.
    Iuso A; Repp B; Biagosch C; Terrile C; Prokisch H
    Methods Mol Biol; 2017; 1567():217-230. PubMed ID: 28276021
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Effects of Phyllanthus urinaria extract on HepG2 cell viability and oxidative phosphorylation by isolated rat liver mitochondria.
    Chudapongse N; Kamkhunthod M; Poompachee K
    J Ethnopharmacol; 2010 Jul; 130(2):315-9. PubMed ID: 20488238
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 4.