These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
440 related articles for article (PubMed ID: 25631260)
1. Evaluation of mechanical property and bioactivity of nano-bioglass 45S5 scaffold coated with poly-3-hydroxybutyrate. Montazeri M; Karbasi S; Foroughi MR; Monshi A; Ebrahimi-Kahrizsangi R J Mater Sci Mater Med; 2015 Feb; 26(2):62. PubMed ID: 25631260 [TBL] [Abstract][Full Text] [Related]
2. Evaluation of the effects of nano-TiO2 on bioactivity and mechanical properties of nano bioglass-P3HB composite scaffold for bone tissue engineering. Bakhtiyari SS; Karbasi S; Monshi A; Montazeri M J Mater Sci Mater Med; 2016 Jan; 27(1):2. PubMed ID: 26610925 [TBL] [Abstract][Full Text] [Related]
3. Study of the mechanical stability and bioactivity of Bioglass(®) based glass-ceramic scaffolds produced via powder metallurgy-inspired technology. Boccardi E; Melli V; Catignoli G; Altomare L; Jahromi MT; Cerruti M; Lefebvre LP; De Nardo L Biomed Mater; 2016 Feb; 11(1):015005. PubMed ID: 26836444 [TBL] [Abstract][Full Text] [Related]
4. Physical, mechanical and biological performance of PHB-Chitosan/MWCNTs nanocomposite coating deposited on bioglass based scaffold: Potential application in bone tissue engineering. Parvizifard M; Karbasi S Int J Biol Macromol; 2020 Jun; 152():645-662. PubMed ID: 32109478 [TBL] [Abstract][Full Text] [Related]
5. Multi-functional P(3HB) microsphere/45S5 Bioglass-based composite scaffolds for bone tissue engineering. Francis L; Meng D; Knowles JC; Roy I; Boccaccini AR Acta Biomater; 2010 Jul; 6(7):2773-86. PubMed ID: 20056174 [TBL] [Abstract][Full Text] [Related]
6. In vitro and in vivo bone formation potential of surface calcium phosphate-coated polycaprolactone and polycaprolactone/bioactive glass composite scaffolds. Poh PSP; Hutmacher DW; Holzapfel BM; Solanki AK; Stevens MM; Woodruff MA Acta Biomater; 2016 Jan; 30():319-333. PubMed ID: 26563472 [TBL] [Abstract][Full Text] [Related]
7. In vitro biocompatibility of 45S5 Bioglass-derived glass-ceramic scaffolds coated with poly(3-hydroxybutyrate). Bretcanu O; Misra S; Roy I; Renghini C; Fiori F; Boccaccini AR; Salih V J Tissue Eng Regen Med; 2009 Feb; 3(2):139-48. PubMed ID: 19170250 [TBL] [Abstract][Full Text] [Related]
8. Systematic evaluation of the osteogenic capacity of low-melting bioactive glass-reinforced 45S5 Bioglass porous scaffolds in rabbit femoral defects. Zhang L; Ke X; Lin L; Xiao J; Yang X; Wang J; Yang G; Xu S; Gou Z; Shi Z Biomed Mater; 2017 Jun; 12(3):035010. PubMed ID: 28589920 [TBL] [Abstract][Full Text] [Related]
9. Preparation and characterization of PHBV microsphere/45S5 bioactive glass composite scaffolds with vancomycin releasing function. Li W; Ding Y; Rai R; Roether JA; Schubert DW; Boccaccini AR Mater Sci Eng C Mater Biol Appl; 2014 Aug; 41():320-8. PubMed ID: 24907766 [TBL] [Abstract][Full Text] [Related]
10. Enhancing the mechanical and in vitro performance of robocast bioglass scaffolds by polymeric coatings: Effect of polymer composition. Motealleh A; Eqtesadi S; Pajares A; Miranda P J Mech Behav Biomed Mater; 2018 Aug; 84():35-45. PubMed ID: 29729579 [TBL] [Abstract][Full Text] [Related]
11. Preparation of porous 45S5 Bioglass-derived glass-ceramic scaffolds by using rice husk as a porogen additive. Wu SC; Hsu HC; Hsiao SH; Ho WF J Mater Sci Mater Med; 2009 Jun; 20(6):1229-36. PubMed ID: 19160020 [TBL] [Abstract][Full Text] [Related]
12. The use of carbon nanotubes to reinforce 45S5 bioglass-based scaffolds for tissue engineering applications. Touri R; Moztarzadeh F; Sadeghian Z; Bizari D; Tahriri M; Mozafari M Biomed Res Int; 2013; 2013():465086. PubMed ID: 24294609 [TBL] [Abstract][Full Text] [Related]
13. On the mechanical properties of PLC-bioactive glass scaffolds fabricated via BioExtrusion. Fiedler T; Videira AC; Bártolo P; Strauch M; Murch GE; Ferreira JM Mater Sci Eng C Mater Biol Appl; 2015 Dec; 57():288-93. PubMed ID: 26354266 [TBL] [Abstract][Full Text] [Related]
14. Bioglass®/chitosan-polycaprolactone bilayered composite scaffolds intended for osteochondral tissue engineering. Yao Q; Nooeaid P; Detsch R; Roether JA; Dong Y; Goudouri OM; Schubert DW; Boccaccini AR J Biomed Mater Res A; 2014 Dec; 102(12):4510-8. PubMed ID: 24677705 [TBL] [Abstract][Full Text] [Related]
15. Hierarchical porous Mg Bigham A; Aghajanian AH; Saudi A; Rafienia M Mater Sci Eng C Mater Biol Appl; 2020 Apr; 109():110579. PubMed ID: 32228948 [TBL] [Abstract][Full Text] [Related]
16. Electrophoretic deposition of mesoporous bioactive glass on glass-ceramic foam scaffolds for bone tissue engineering. Fiorilli S; Baino F; Cauda V; Crepaldi M; Vitale-Brovarone C; Demarchi D; Onida B J Mater Sci Mater Med; 2015 Jan; 26(1):5346. PubMed ID: 25578700 [TBL] [Abstract][Full Text] [Related]
17. PCL-coated hydroxyapatite scaffold derived from cuttlefish bone: morphology, mechanical properties and bioactivity. Milovac D; Gallego Ferrer G; Ivankovic M; Ivankovic H Mater Sci Eng C Mater Biol Appl; 2014 Jan; 34():437-45. PubMed ID: 24268280 [TBL] [Abstract][Full Text] [Related]
18. Bioactivity of polyurethane-based scaffolds coated with Bioglass. Bil M; Ryszkowska J; Roether JA; Bretcanu O; Boccaccini AR Biomed Mater; 2007 Jun; 2(2):93-101. PubMed ID: 18458441 [TBL] [Abstract][Full Text] [Related]
19. [Mechanical properties of polylactic acid/beta-tricalcium phosphate composite scaffold with double channels based on three-dimensional printing technique]. Lian Q; Zhuang P; Li C; Jin Z; Li D Zhongguo Xiu Fu Chong Jian Wai Ke Za Zhi; 2014 Mar; 28(3):309-13. PubMed ID: 24844010 [TBL] [Abstract][Full Text] [Related]
20. Mechanical evaluation of nHAp scaffold coated with poly-3-hydroxybutyrate for bone tissue engineering. Foroughi MR; Karbasi S; Ebrahimi-Kahrizsangi R J Nanosci Nanotechnol; 2013 Feb; 13(2):1555-62. PubMed ID: 23646681 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]