BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

324 related articles for article (PubMed ID: 25631397)

  • 1. Development of workflow for recording virtual bite in the planning of orthognathic operations.
    Nilsson J; Thor A; Kamer L
    Br J Oral Maxillofac Surg; 2015 Apr; 53(4):384-6. PubMed ID: 25631397
    [No Abstract]   [Full Text] [Related]  

  • 2. Computer-aided orthognathic surgery.
    Gelesko S; Markiewicz MR; Weimer K; Bell RB
    Atlas Oral Maxillofac Surg Clin North Am; 2012 Mar; 20(1):107-18. PubMed ID: 22365433
    [No Abstract]   [Full Text] [Related]  

  • 3. A cone-beam computed tomography triple scan procedure to obtain a three-dimensional augmented virtual skull model appropriate for orthognathic surgery planning.
    Swennen GR; Mollemans W; De Clercq C; Abeloos J; Lamoral P; Lippens F; Neyt N; Casselman J; Schutyser F
    J Craniofac Surg; 2009 Mar; 20(2):297-307. PubMed ID: 19276829
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Computer-assisted three-dimensional surgical planning: 3D virtual articulator: technical note.
    Ghanai S; Marmulla R; Wiechnik J; Mühling J; Kotrikova B
    Int J Oral Maxillofac Surg; 2010 Jan; 39(1):75-82. PubMed ID: 20005674
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A new method to move mandible to intercuspal position in virtual three-dimensional orthognathic surgery by integrating primary occlusion model.
    Dai J; Wang X; Hu G; Shen SG
    J Oral Maxillofac Surg; 2012 Sep; 70(9):e484-9. PubMed ID: 22907113
    [No Abstract]   [Full Text] [Related]  

  • 6. Clinical experiences of digital model surgery and the rapid-prototyped wafer for maxillary orthognathic surgery.
    Kim BC; Lee CE; Park W; Kim MK; Zhengguo P; Yu HS; Yi CK; Lee SH
    Oral Surg Oral Med Oral Pathol Oral Radiol Endod; 2011 Mar; 111(3):278-85.e1. PubMed ID: 20692187
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Orthognathic positioning system: intraoperative system to transfer virtual surgical plan to operating field during orthognathic surgery.
    Polley JW; Figueroa AA
    J Oral Maxillofac Surg; 2013 May; 71(5):911-20. PubMed ID: 23312847
    [TBL] [Abstract][Full Text] [Related]  

  • 8. An evaluation of face-bow transfer for the planning of orthognathic surgery.
    Zizelmann C; Hammer B; Gellrich NC; Schwestka-Polly R; Rana M; Bucher P
    J Oral Maxillofac Surg; 2012 Aug; 70(8):1944-50. PubMed ID: 22079061
    [TBL] [Abstract][Full Text] [Related]  

  • 9. An integrated orthognathic surgery system for virtual planning and image-guided transfer without intermediate splint.
    Kim DS; Woo SY; Yang HJ; Huh KH; Lee SS; Heo MS; Choi SC; Hwang SJ; Yi WJ
    J Craniomaxillofac Surg; 2014 Dec; 42(8):2010-7. PubMed ID: 25458350
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Virtual bite registration using intraoral digital scanning, CT and CBCT: In vitro evaluation of a new method and its implication for orthognathic surgery.
    Nilsson J; Richards RG; Thor A; Kamer L
    J Craniomaxillofac Surg; 2016 Sep; 44(9):1194-200. PubMed ID: 27423538
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The use of a wax bite wafer and a double computed tomography scan procedure to obtain a three-dimensional augmented virtual skull model.
    Swennen GR; Mommaerts MY; Abeloos J; De Clercq C; Lamoral P; Neyt N; Casselman J; Schutyser F
    J Craniofac Surg; 2007 May; 18(3):533-9. PubMed ID: 17538314
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Virtual surgical planning for orthognathic surgery using digital data transfer and an intraoral fiducial marker: the charlotte method.
    Bobek S; Farrell B; Choi C; Farrell B; Weimer K; Tucker M
    J Oral Maxillofac Surg; 2015 Jun; 73(6):1143-58. PubMed ID: 25795181
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Condylar repositioning according to digital bite registration method for virtual orthognathic surgery planning: A series of 49 consecutive patients.
    Fricain M; Charavet C; Raoult AG; Oueiss A; Savoldelli C
    Am J Orthod Dentofacial Orthop; 2022 Sep; 162(3):e133-e140. PubMed ID: 35835701
    [TBL] [Abstract][Full Text] [Related]  

  • 14. New protocol for three-dimensional surgical planning and CAD/CAM splint generation in orthognathic surgery: an in vitro and in vivo study.
    Hernández-Alfaro F; Guijarro-Martínez R
    Int J Oral Maxillofac Surg; 2013 Dec; 42(12):1547-56. PubMed ID: 23768749
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Digital model planning and computerized fabrication of orthognathic surgery wafers.
    Cousley RR; Turner MJ
    J Orthod; 2014 Mar; 41(1):38-45. PubMed ID: 24235100
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Computer-assisted orthognathic surgery: feasibility study using multiple CAD/CAM surgical splints.
    Zinser MJ; Mischkowski RA; Sailer HF; Zöller JE
    Oral Surg Oral Med Oral Pathol Oral Radiol; 2012 May; 113(5):673-87. PubMed ID: 22668627
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Using a clinical protocol for orthognathic surgery and assessing a 3-dimensional virtual approach: current therapy.
    Quevedo LA; Ruiz JV; Quevedo CA
    J Oral Maxillofac Surg; 2011 Mar; 69(3):623-37. PubMed ID: 21353925
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Orthognathic Y-splint: a CAD/CAM-engineered maxillary repositioning wafer assembly.
    Kang SH; Kim MK; Kim BC; Lee SH
    Br J Oral Maxillofac Surg; 2014 Sep; 52(7):667-9. PubMed ID: 24957472
    [No Abstract]   [Full Text] [Related]  

  • 19. Digital Workflow for Combined Orthodontics and Orthognathic Surgery.
    Elnagar MH; Aronovich S; Kusnoto B
    Oral Maxillofac Surg Clin North Am; 2020 Feb; 32(1):1-14. PubMed ID: 31699582
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Use of cone beam computed tomography and a laser intraoral scanner in virtual dental implant surgery: part 1.
    Lee CY; Ganz SD; Wong N; Suzuki JB
    Implant Dent; 2012 Aug; 21(4):265-71. PubMed ID: 22814549
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 17.