These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

318 related articles for article (PubMed ID: 25631610)

  • 41. λ³/1000 plasmonic nanocavities for biosensing fabricated by soft UV nanoimprint lithography.
    Cattoni A; Ghenuche P; Haghiri-Gosnet AM; Decanini D; Chen J; Pelouard JL; Collin S
    Nano Lett; 2011 Sep; 11(9):3557-63. PubMed ID: 21805967
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Design of an optofluidic biosensor using the slow-light effect in photonic crystal structures.
    Hosseinibalam F; Hassanzadeh S; Ebnali-Heidari A; Karnutsch C
    Appl Opt; 2012 Feb; 51(5):568-76. PubMed ID: 22330288
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Nanometer-thick conformal pore sealing of self-assembled mesoporous silica by plasma-assisted atomic layer deposition.
    Jiang YB; Liu N; Gerung H; Cecchi JL; Brinker CJ
    J Am Chem Soc; 2006 Aug; 128(34):11018-9. PubMed ID: 16925407
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Phase Formation Behavior in Ultrathin Iron Oxide.
    Jõgi I; Jacobsson TJ; Fondell M; Wätjen T; Carlsson JO; Boman M; Edvinsson T
    Langmuir; 2015 Nov; 31(45):12372-81. PubMed ID: 26506091
    [TBL] [Abstract][Full Text] [Related]  

  • 45. An interference localized surface plasmon resonance biosensor based on the photonic structure of Au nanoparticles and SiO2/Si multilayers.
    Hiep HM; Yoshikawa H; Saito M; Tamiya E
    ACS Nano; 2009 Feb; 3(2):446-52. PubMed ID: 19236084
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Low-concentration mechanical biosensor based on a photonic crystal nanowire array.
    Lu Y; Peng S; Luo D; Lal A
    Nat Commun; 2011 Dec; 2():578. PubMed ID: 22146397
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Sensitivities of InGaAsP photonic crystal membrane nanocavities to hole refractive index.
    Dündar MA; Ryckebosch EC; Nötzel R; Karouta F; van Ijzendoorn LJ; van der Heijden RW
    Opt Express; 2010 Mar; 18(5):4049-56. PubMed ID: 20389419
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Low-threshold lasing action in photonic crystal slabs enabled by Fano resonances.
    Chua SL; Chong Y; Stone AD; Soljacić M; Bravo-Abad J
    Opt Express; 2011 Jan; 19(2):1539-62. PubMed ID: 21263695
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Tuning efficiency and sensitivity of guided resonances in photonic crystals and quasi-crystals: a comparative study.
    Pisco M; Ricciardi A; Gallina I; Castaldi G; Campopiano S; Cutolo A; Cusano A; Galdi V
    Opt Express; 2010 Aug; 18(16):17280-93. PubMed ID: 20721116
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Atomic Layer Deposition in Bio-Nanotechnology: A Brief Overview.
    Bishal AK; Butt A; Selvaraj SK; Joshi B; Patel SB; Huang S; Yang B; Shukohfar T; Sukotjo C; Takoudis CG
    Crit Rev Biomed Eng; 2015; 43(4):255-76. PubMed ID: 27480459
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Colorimetric detection of ultrathin dielectrics on strong interference coatings.
    Ayas S; Bakan G; Ozgur E; Celebi K; Torunoglu G; Dana A
    Opt Lett; 2018 Mar; 43(6):1379-1382. PubMed ID: 29543240
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Nanobeam photonic bandedge lasers.
    Kim S; Ahn BH; Kim JY; Jeong KY; Kim KS; Lee YH
    Opt Express; 2011 Nov; 19(24):24055-60. PubMed ID: 22109430
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Computational study of a label-free biosensor based on a photonic crystal nanocavity resonator.
    Olyaee S; Najafgholinezhad S
    Appl Opt; 2013 Oct; 52(29):7206-13. PubMed ID: 24217740
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Analytical and physical optimization of nanohole-array sensors prepared by modified nanosphere lithography.
    Murray-Methot MP; Menegazzo N; Masson JF
    Analyst; 2008 Dec; 133(12):1714-21. PubMed ID: 19082074
    [TBL] [Abstract][Full Text] [Related]  

  • 55. A simulation model considering sidewall deposition for the precise prediction of the performance of label-free photonic-crystal biosensors.
    Han YA; Byeon E; Kim J; Kim SM
    J Nanosci Nanotechnol; 2012 Jul; 12(7):5429-34. PubMed ID: 22966584
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Optimization of high-Q coupled nanobeam cavity for label-free sensing.
    Yaseen MT; Yang YC; Shih MH; Chang YC
    Sensors (Basel); 2015 Oct; 15(10):25868-81. PubMed ID: 26473870
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Optical biosensors based on photonic crystal surface waves.
    Konopsky VN; Alieva EV
    Methods Mol Biol; 2009; 503():49-64. PubMed ID: 19151936
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Glass-embedded two-dimensional silicon photonic crystal devices with a broad bandwidth waveguide and a high quality nanocavity.
    Jeon SW; Han JK; Song BS; Noda S
    Opt Express; 2010 Aug; 18(18):19361-6. PubMed ID: 20940831
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Sub-wavelength nanofluidics in photonic crystal sensors.
    Huang M; Yanik AA; Chang TY; Altug H
    Opt Express; 2009 Dec; 17(26):24224-33. PubMed ID: 20052133
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Templated assembly of biomembranes on silica microspheres using bacteriorhodopsin conjugates as structural anchors.
    Sharma MK; Gilchrist ML
    Langmuir; 2007 Jun; 23(13):7101-12. PubMed ID: 17511484
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 16.