These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

147 related articles for article (PubMed ID: 2563165)

  • 1. Consequences of stochastic release of neurotransmitters for network computation in the central nervous system.
    Burnod Y; Korn H
    Proc Natl Acad Sci U S A; 1989 Jan; 86(1):352-6. PubMed ID: 2563165
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Probabilistic secretion of quanta in the central nervous system: granule cell synaptic control of pattern separation and activity regulation.
    Gibson WG; Robinson J; Bennett MR
    Philos Trans R Soc Lond B Biol Sci; 1991 Jun; 332(1264):199-220. PubMed ID: 1680237
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A simple model of transmitter release and facilitation.
    Bertram R
    Neural Comput; 1997 Apr; 9(3):515-23. PubMed ID: 9097471
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A review of the integrate-and-fire neuron model: I. Homogeneous synaptic input.
    Burkitt AN
    Biol Cybern; 2006 Jul; 95(1):1-19. PubMed ID: 16622699
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Inferring network activity from synaptic noise.
    Rudolph M; Destexhe A
    J Physiol Paris; 2004; 98(4-6):452-66. PubMed ID: 16289550
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Optimum signal in a simple neuronal model with signal-dependent noise.
    Greenwood PE; Lánský P
    Biol Cybern; 2005 Mar; 92(3):199-205. PubMed ID: 15750866
    [TBL] [Abstract][Full Text] [Related]  

  • 7. From the stochasticity of molecular processes to the variability of synaptic transmission.
    Ribrault C; Sekimoto K; Triller A
    Nat Rev Neurosci; 2011 Jun; 12(7):375-87. PubMed ID: 21685931
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Probabilistic secretion of quanta and the synaptosecretosome hypothesis: evoked release at active zones of varicosities, boutons, and endplates.
    Bennett MR; Gibson WG; Robinson J
    Biophys J; 1997 Oct; 73(4):1815-29. PubMed ID: 9336177
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Generation of synaptic noise: selective involvement of neuronal subsets.
    Kerszberg M; Korn H
    New Biol; 1991 Jul; 3(7):717-23. PubMed ID: 1751453
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A theoretical framework for quantal analysis and its application to long-term potentiation.
    Blum KI; Idiart MA
    J Neurophysiol; 1994 Sep; 72(3):1395-401. PubMed ID: 7807220
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Target cell-dependent normalization of transmitter release at neocortical synapses.
    Koester HJ; Johnston D
    Science; 2005 May; 308(5723):863-6. PubMed ID: 15774725
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The probability of transmitter release at a mammalian central synapse.
    Hessler NA; Shirke AM; Malinow R
    Nature; 1993 Dec; 366(6455):569-72. PubMed ID: 7902955
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A review of the integrate-and-fire neuron model: II. Inhomogeneous synaptic input and network properties.
    Burkitt AN
    Biol Cybern; 2006 Aug; 95(2):97-112. PubMed ID: 16821035
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Shunting inhibition controls the gain modulation mediated by asynchronous neurotransmitter release in early development.
    Volman V; Levine H; Sejnowski TJ
    PLoS Comput Biol; 2010 Nov; 6(11):e1000973. PubMed ID: 21079676
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Double inverse stochastic resonance with dynamic synapses.
    Uzuntarla M; Torres JJ; So P; Ozer M; Barreto E
    Phys Rev E; 2017 Jan; 95(1-1):012404. PubMed ID: 28208458
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Model of an excitatory synapse based on stochastic processes.
    L'Espérance PY; Labib R
    IEEE Trans Neural Netw Learn Syst; 2013 Sep; 24(9):1449-58. PubMed ID: 24808581
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Stochastic resonance in Hodgkin-Huxley neuron induced by unreliable synaptic transmission.
    Guo D; Li C
    J Theor Biol; 2012 Sep; 308():105-14. PubMed ID: 22687443
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Cellular physiology of hypoxia of the mammalian central nervous system.
    Somjen GG; Aitken PG; Czéh G; Jing J; Young JN
    Res Publ Assoc Res Nerv Ment Dis; 1993; 71():51-65. PubMed ID: 8380239
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Synaptic depression leads to nonmonotonic frequency dependence in the coincidence detector.
    Mikula S; Niebur E
    Neural Comput; 2003 Oct; 15(10):2339-58. PubMed ID: 14511524
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The role of synaptic facilitation in spike coincidence detection.
    Mejías JF; Torres JJ
    J Comput Neurosci; 2008 Apr; 24(2):222-34. PubMed ID: 17674172
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.