These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

152 related articles for article (PubMed ID: 25631919)

  • 1. Some molecular/crystalline factors that affect the sensitivities of energetic materials: molecular surface electrostatic potentials, lattice free space and maximum heat of detonation per unit volume.
    Politzer P; Murray JS
    J Mol Model; 2015 Feb; 21(2):25. PubMed ID: 25631919
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Molecular design and screening of energetic nitramine derivatives.
    Devi A; Deswal S; Dharavath S; Ghule VD
    J Mol Model; 2015 Nov; 21(11):298. PubMed ID: 26518690
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Molecular dynamics characterization of void defects in crystalline (1,3,5-trinitro-1,3,5-triazacyclohexane).
    Boyd S; Murray JS; Politzer P
    J Chem Phys; 2009 Nov; 131(20):204903. PubMed ID: 19947705
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Nitramines with varying sensitivities: functionalized dipyrazolyl-N-nitromethanamines as energetic materials.
    Zhang J; He C; Parrish DA; Shreeve JM
    Chemistry; 2013 Jul; 19(27):8929-36. PubMed ID: 23681737
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Theoretical studies on the heats of formation, detonation properties, and pyrolysis mechanisms of energetic cyclic nitramines.
    Wang F; Wang G; Du H; Zhang J; Gong X
    J Phys Chem A; 2011 Dec; 115(47):13858-64. PubMed ID: 22003897
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A possible crystal volume factor in the impact sensitivities of some energetic compounds.
    Pospísil M; Vávra P; Concha MC; Murray JS; Politzer P
    J Mol Model; 2010 May; 16(5):895-901. PubMed ID: 19784678
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Theoretical exploration about the thermal stability and detonation properties of nitro-substituted hypoxanthine.
    Li B; Li L; Luo T
    J Mol Model; 2020 May; 26(6):114. PubMed ID: 32377793
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Quick estimation of heats of detonation of aromatic energetic compounds from structural parameters.
    Keshavarz MH
    J Hazard Mater; 2007 May; 143(1-2):549-54. PubMed ID: 17074439
    [TBL] [Abstract][Full Text] [Related]  

  • 9. New aspects of initiation reactivities of energetic materials demonstrated on nitramines.
    Zeman S
    J Hazard Mater; 2006 May; 132(2-3):155-64. PubMed ID: 16314044
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Reliable prediction of electric spark sensitivity of nitramines: a general correlation with detonation pressure.
    Keshavarz MH; Pouretedal HR; Semnani A
    J Hazard Mater; 2009 Aug; 167(1-3):461-6. PubMed ID: 19188021
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A Study of 5-(1,2,4-Triazol-C-yl)tetrazol-1-ols: Combining the Benefits of Different Heterocycles for the Design of Energetic Materials.
    Dippold AA; Izsák D; Klapötke TM
    Chemistry; 2013 Sep; 19(36):12042-51. PubMed ID: 23878073
    [TBL] [Abstract][Full Text] [Related]  

  • 12. How aromatic system size affects the sensitivities of highly energetic molecules?
    Veljković IS; Radovanović JI; Veljković DŽ
    RSC Adv; 2021 Sep; 11(51):31933-31940. PubMed ID: 35495524
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Molecular Design and Property Prediction for a Series of Novel Dicyclic Cyclotrimethylene Trinitramines (RDX) Derivatized as High Energy Density Materials.
    Shen C; Wang P; Lu M
    J Phys Chem A; 2015 Jul; 119(29):8250-5. PubMed ID: 26132775
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Chelate Coordination Compounds as a New Class of High-Energy Materials: The Case of Nitro-Bis(Acetylacetonato) Complexes.
    Kretić DS; Veljković IS; Đunović AB; Veljković DŽ
    Molecules; 2021 Sep; 26(18):. PubMed ID: 34576908
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Energetic N-trinitroethyl-substituted mono-, di-, and triaminotetrazoles.
    Zhang Q; Zhang J; Parrish DA; Shreeve JM
    Chemistry; 2013 Aug; 19(33):11000-6. PubMed ID: 23794403
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Models for predicting impact sensitivity of energetic materials based on the trigger linkage hypothesis and Arrhenius kinetics.
    Jensen TL; Moxnes JF; Unneberg E; Christensen D
    J Mol Model; 2020 Mar; 26(4):65. PubMed ID: 32130532
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Molecular design and property prediction of high density polynitro[3.3.3]-propellane-derivatized frameworks as potential high explosives.
    Zhang Q; Zhang J; Qi X; Shreeve JM
    J Phys Chem A; 2014 Nov; 118(45):10857-65. PubMed ID: 25325391
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Asymmetrically substituted 5,5'-bistriazoles--nitrogen-rich materials with various energetic functionalities.
    Dippold AA; Klapötke TM; Oswald M
    Dalton Trans; 2013 Aug; 42(31):11136-45. PubMed ID: 23804030
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A Study of the 3,3,3-Trinitropropyl Unit as a Potential Energetic Building Block.
    Axthammer QJ; Krumm B; Klapötke TM; Scharf R
    Chemistry; 2015 Nov; 21(45):16229-39. PubMed ID: 26377846
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Can the sensitivity of energetic materials be tuned by using hydrogen bonds? Another look at the role of hydrogen bonding in the design of high energetic compounds.
    Kretić DS; Radovanović JI; Veljković DŽ
    Phys Chem Chem Phys; 2021 Mar; 23(12):7472-7479. PubMed ID: 33876107
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.