These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

209 related articles for article (PubMed ID: 25632078)

  • 1. Redistribution of neural phase coherence reflects establishment of feedforward map in speech motor adaptation.
    Sengupta R; Nasir SM
    J Neurophysiol; 2015 Apr; 113(7):2471-9. PubMed ID: 25632078
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Anomaly in neural phase coherence accompanies reduced sensorimotor integration in adults who stutter.
    Sengupta R; Shah S; Gore K; Loucks T; Nasir SM
    Neuropsychologia; 2016 Dec; 93(Pt A):242-250. PubMed ID: 27833009
    [TBL] [Abstract][Full Text] [Related]  

  • 3. High-gamma band fronto-temporal coherence as a measure of functional connectivity in speech motor control.
    Kingyon J; Behroozmand R; Kelley R; Oya H; Kawasaki H; Narayanan NS; Greenlee JD
    Neuroscience; 2015 Oct; 305():15-25. PubMed ID: 26232713
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Sensory-motor networks involved in speech production and motor control: an fMRI study.
    Behroozmand R; Shebek R; Hansen DR; Oya H; Robin DA; Howard MA; Greenlee JD
    Neuroimage; 2015 Apr; 109():418-28. PubMed ID: 25623499
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Alpha and theta brain oscillations index dissociable processes in spoken word recognition.
    Strauß A; Kotz SA; Scharinger M; Obleser J
    Neuroimage; 2014 Aug; 97():387-95. PubMed ID: 24747736
    [TBL] [Abstract][Full Text] [Related]  

  • 6. θ-Band and β-Band Neural Activity Reflects Independent Syllable Tracking and Comprehension of Time-Compressed Speech.
    Pefkou M; Arnal LH; Fontolan L; Giraud AL
    J Neurosci; 2017 Aug; 37(33):7930-7938. PubMed ID: 28729443
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The predictive roles of neural oscillations in speech motor adaptability.
    Sengupta R; Nasir SM
    J Neurophysiol; 2016 Jun; 115(5):2519-28. PubMed ID: 26936976
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Increased speech contrast induced by sensorimotor adaptation to a nonuniform auditory perturbation.
    Parrell B; Niziolek CA
    J Neurophysiol; 2021 Feb; 125(2):638-647. PubMed ID: 33356887
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Theta, beta and gamma rate modulations in the developing auditory system.
    Vanvooren S; Hofmann M; Poelmans H; Ghesquière P; Wouters J
    Hear Res; 2015 Sep; 327():153-62. PubMed ID: 26117409
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The predictability of frequency-altered auditory feedback changes the weighting of feedback and feedforward input for speech motor control.
    Scheerer NE; Jones JA
    Eur J Neurosci; 2014 Dec; 40(12):3793-806. PubMed ID: 25263844
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Phase-amplitude coupling between theta and gamma oscillations adapts to speech rate.
    Lizarazu M; Lallier M; Molinaro N
    Ann N Y Acad Sci; 2019 Oct; 1453(1):140-152. PubMed ID: 31020680
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Neural bases of sensorimotor adaptation in the vocal motor system.
    Behroozmand R; Sangtian S
    Exp Brain Res; 2018 Jul; 236(7):1881-1895. PubMed ID: 29696312
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Theta-gamma coupling reflects the interaction of bottom-up and top-down processes in speech perception in children.
    Wang J; Gao D; Li D; Desroches AS; Liu L; Li X
    Neuroimage; 2014 Nov; 102 Pt 2():637-45. PubMed ID: 25172208
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Self-monitoring in the cerebral cortex: Neural responses to small pitch shifts in auditory feedback during speech production.
    Franken MK; Eisner F; Acheson DJ; McQueen JM; Hagoort P; Schoffelen JM
    Neuroimage; 2018 Oct; 179():326-336. PubMed ID: 29936308
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Cortical interactions underlying the production of speech sounds.
    Guenther FH
    J Commun Disord; 2006; 39(5):350-65. PubMed ID: 16887139
    [TBL] [Abstract][Full Text] [Related]  

  • 16. EEG oscillations entrain their phase to high-level features of speech sound.
    Zoefel B; VanRullen R
    Neuroimage; 2016 Jan; 124(Pt A):16-23. PubMed ID: 26341026
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Neural correlates of auditory distraction revealed in θ-band EEG.
    Ponjavic-Conte KD; Dowdall JR; Hambrook DA; Luczak A; Tata MS
    Neuroreport; 2012 Mar; 23(4):240-5. PubMed ID: 22314684
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Noninvasive neurostimulation of left ventral motor cortex enhances sensorimotor adaptation in speech production.
    Scott TL; Haenchen L; Daliri A; Chartove J; Guenther FH; Perrachione TK
    Brain Lang; 2020 Oct; 209():104840. PubMed ID: 32738502
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Role of inter-trial phase coherence in atypical auditory evoked potentials to speech and nonspeech stimuli in children with autism.
    Yu L; Wang S; Huang D; Wu X; Zhang Y
    Clin Neurophysiol; 2018 Jul; 129(7):1374-1382. PubMed ID: 29729592
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Sensorimotor adaptation to feedback perturbations of vowel acoustics and its relation to perception.
    Villacorta VM; Perkell JS; Guenther FH
    J Acoust Soc Am; 2007 Oct; 122(4):2306-19. PubMed ID: 17902866
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.