BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

331 related articles for article (PubMed ID: 25632992)

  • 1. Regulatory T-cell impairment in cystic fibrosis patients with chronic pseudomonas infection.
    Hector A; Schäfer H; Pöschel S; Fischer A; Fritzsching B; Ralhan A; Carevic M; Öz H; Zundel S; Hogardt M; Bakele M; Rieber N; Riethmueller J; Graepler-Mainka U; Stahl M; Bender A; Frick JS; Mall M; Hartl D
    Am J Respir Crit Care Med; 2015 Apr; 191(8):914-23. PubMed ID: 25632992
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Pseudomonas aeruginosa infection, but not mono or dual-combination CFTR modulator therapy affects circulating regulatory T cells in an adult population with cystic fibrosis.
    Westhölter D; Beckert H; Straßburg S; Welsner M; Sutharsan S; Taube C; Reuter S
    J Cyst Fibros; 2021 Nov; 20(6):1072-1079. PubMed ID: 34030985
    [TBL] [Abstract][Full Text] [Related]  

  • 3. High peripheral blood th17 percent associated with poor lung function in cystic fibrosis.
    Mulcahy EM; Hudson JB; Beggs SA; Reid DW; Roddam LF; Cooley MA
    PLoS One; 2015; 10(3):e0120912. PubMed ID: 25803862
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A Th17- and Th2-skewed cytokine profile in cystic fibrosis lungs represents a potential risk factor for Pseudomonas aeruginosa infection.
    Tiringer K; Treis A; Fucik P; Gona M; Gruber S; Renner S; Dehlink E; Nachbaur E; Horak F; Jaksch P; Döring G; Crameri R; Jung A; Rochat MK; Hörmann M; Spittler A; Klepetko W; Akdis CA; Szépfalusi Z; Frischer T; Eiwegger T
    Am J Respir Crit Care Med; 2013 Mar; 187(6):621-9. PubMed ID: 23306544
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Pulmonary T(H)2 response in Pseudomonas aeruginosa-infected patients with cystic fibrosis.
    Hartl D; Griese M; Kappler M; Zissel G; Reinhardt D; Rebhan C; Schendel DJ; Krauss-Etschmann S
    J Allergy Clin Immunol; 2006 Jan; 117(1):204-11. PubMed ID: 16387607
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Flagellin induces myeloid-derived suppressor cells: implications for Pseudomonas aeruginosa infection in cystic fibrosis lung disease.
    Rieber N; Brand A; Hector A; Graepler-Mainka U; Ost M; Schäfer I; Wecker I; Neri D; Wirth A; Mays L; Zundel S; Fuchs J; Handgretinger R; Stern M; Hogardt M; Döring G; Riethmüller J; Kormann M; Hartl D
    J Immunol; 2013 Feb; 190(3):1276-84. PubMed ID: 23277486
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Chronic Pseudomonas aeruginosa infection and respiratory muscle impairment in cystic fibrosis.
    Dassios TG; Katelari A; Doudounakis S; Dimitriou G
    Respir Care; 2014 Mar; 59(3):363-70. PubMed ID: 23983273
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Mouse models of chronic lung infection with Pseudomonas aeruginosa: models for the study of cystic fibrosis.
    Stotland PK; Radzioch D; Stevenson MM
    Pediatr Pulmonol; 2000 Nov; 30(5):413-24. PubMed ID: 11064433
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Optimal complement-mediated phagocytosis of Pseudomonas aeruginosa by monocytes is cystic fibrosis transmembrane conductance regulator-dependent.
    Van de Weert-van Leeuwen PB; Van Meegen MA; Speirs JJ; Pals DJ; Rooijakkers SH; Van der Ent CK; Terheggen-Lagro SW; Arets HG; Beekman JM
    Am J Respir Cell Mol Biol; 2013 Sep; 49(3):463-70. PubMed ID: 23617438
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Analysis of DEFB1 regulatory SNPs in cystic fibrosis patients from North-Eastern Italy.
    Segat L; Morgutti M; Athanasakis E; Trevisiol C; Amaddeo A; Poli F; Crovella S
    Int J Immunogenet; 2010 Jun; 37(3):169-75. PubMed ID: 20193032
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Harnessing Neutrophil Survival Mechanisms during Chronic Infection by
    Marteyn BS; Burgel PR; Meijer L; Witko-Sarsat V
    Front Cell Infect Microbiol; 2017; 7():243. PubMed ID: 28713772
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Fcgamma receptor IIA genotype and susceptibility to P. aeruginosa infection in patients with cystic fibrosis.
    De Rose V; Arduino C; Cappello N; Piana R; Salmin P; Bardessono M; Goia M; Padoan R; Bignamini E; Costantini D; Pizzamiglio G; Bennato V; Colombo C; Giunta A; Piazza A
    Eur J Hum Genet; 2005 Jan; 13(1):96-101. PubMed ID: 15367919
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Lung arginase expression and activity is increased in cystic fibrosis mouse models.
    Jaecklin T; Duerr J; Huang H; Rafii M; Bear CE; Ratjen F; Pencharz P; Kavanagh BP; Mall MA; Grasemann H
    J Appl Physiol (1985); 2014 Aug; 117(3):284-8. PubMed ID: 24925982
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Longitudinal development of mucoid Pseudomonas aeruginosa infection and lung disease progression in children with cystic fibrosis.
    Li Z; Kosorok MR; Farrell PM; Laxova A; West SE; Green CG; Collins J; Rock MJ; Splaingard ML
    JAMA; 2005 Feb; 293(5):581-8. PubMed ID: 15687313
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Modulatory effect of the SLC9A3 gene on susceptibility to infections and pulmonary function in children with cystic fibrosis.
    Dorfman R; Taylor C; Lin F; Sun L; Sandford A; Paré P; Berthiaume Y; Corey M; Durie P; Zielenski J;
    Pediatr Pulmonol; 2011 Apr; 46(4):385-92. PubMed ID: 20967843
    [TBL] [Abstract][Full Text] [Related]  

  • 16. CFTR genotype and clinical outcomes of adult patients carried as cystic fibrosis disease.
    Bonadia LC; de Lima Marson FA; Ribeiro JD; Paschoal IA; Pereira MC; Ribeiro AF; Bertuzzo CS
    Gene; 2014 May; 540(2):183-90. PubMed ID: 24583165
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Regulatory T cell enhancement in adults with cystic fibrosis receiving Elexacaftor/Tezacaftor/Ivacaftor therapy.
    Westhölter D; Raspe J; Uebner H; Pipping J; Schmitz M; Straßburg S; Sutharsan S; Welsner M; Taube C; Reuter S
    Front Immunol; 2023; 14():1107437. PubMed ID: 36875141
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Cystic fibrosis transmembrane conductance regulator (CFTR)-mediated residual chloride secretion does not protect against early chronic Pseudomonas aeruginosa infection in F508del homozygous cystic fibrosis patients.
    Derichs N; Mekus F; Bronsveld I; Bijman J; Veeze HJ; von der Hardt H; Tummler B; Ballmann M
    Pediatr Res; 2004 Jan; 55(1):69-75. PubMed ID: 14605249
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Hypersusceptibility of cystic fibrosis mice to chronic Pseudomonas aeruginosa oropharyngeal colonization and lung infection.
    Coleman FT; Mueschenborn S; Meluleni G; Ray C; Carey VJ; Vargas SO; Cannon CL; Ausubel FM; Pier GB
    Proc Natl Acad Sci U S A; 2003 Feb; 100(4):1949-54. PubMed ID: 12578988
    [TBL] [Abstract][Full Text] [Related]  

  • 20. DCTN4 as a modifier of chronic Pseudomonas aeruginosa infection in cystic fibrosis.
    Viel M; Hubert D; Burgel PR; Génin E; Honoré I; Martinez B; Gaitch N; Chapron J; Kanaan R; Dusser D; Girodon E; Bienvenu T
    Clin Respir J; 2016 Nov; 10(6):777-783. PubMed ID: 25763772
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 17.