These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
90 related articles for article (PubMed ID: 25633018)
1. Recognition mechanism between Lac repressor and DNA with correlation network analysis. Xu L; Ye W; Jiang C; Yang J; Zhang J; Feng Y; Luo R; Chen HF J Phys Chem B; 2015 Feb; 119(7):2844-56. PubMed ID: 25633018 [TBL] [Abstract][Full Text] [Related]
2. The Hinge Region Strengthens the Nonspecific Interaction between Lac-Repressor and DNA: A Computer Simulation Study. Sun L; Tabaka M; Hou S; Li L; Burdzy K; Aksimentiev A; Maffeo C; Zhang X; Holyst R PLoS One; 2016; 11(3):e0152002. PubMed ID: 27008630 [TBL] [Abstract][Full Text] [Related]
3. Insights into the sliding movement of the lac repressor nonspecifically bound to DNA. Furini S; Domene C; Cavalcanti S J Phys Chem B; 2010 Feb; 114(6):2238-45. PubMed ID: 20095570 [TBL] [Abstract][Full Text] [Related]
4. DNA recognition process of the lactose repressor protein studied via metadynamics and umbrella sampling simulations. Furini S; Domene C J Phys Chem B; 2014 Nov; 118(46):13059-65. PubMed ID: 25341013 [TBL] [Abstract][Full Text] [Related]
5. The natural DNA bending angle in the lac repressor headpiece-O1 operator complex is determined by protein-DNA contacts and water release. Barr D; van der Vaart A Phys Chem Chem Phys; 2012 Feb; 14(6):2070-7. PubMed ID: 22234444 [TBL] [Abstract][Full Text] [Related]
6. Dissociation free-energy profiles of specific and nonspecific DNA-protein complexes. Yonetani Y; Kono H J Phys Chem B; 2013 Jun; 117(25):7535-45. PubMed ID: 23713479 [TBL] [Abstract][Full Text] [Related]
8. Thermodynamics of the interactions of lac repressor with variants of the symmetric lac operator: effects of converting a consensus site to a non-specific site. Frank DE; Saecker RM; Bond JP; Capp MW; Tsodikov OV; Melcher SE; Levandoski MM; Record MT J Mol Biol; 1997 Apr; 267(5):1186-206. PubMed ID: 9150406 [TBL] [Abstract][Full Text] [Related]
9. Hinge-helix formation and DNA bending in various lac repressor-operator complexes. Spronk CA; Folkers GE; Noordman AM; Wechselberger R; van den Brink N; Boelens R; Kaptein R EMBO J; 1999 Nov; 18(22):6472-80. PubMed ID: 10562559 [TBL] [Abstract][Full Text] [Related]
10. Functional rules for lac repressor-operator associations and implications for protein-DNA interactions. Milk L; Daber R; Lewis M Protein Sci; 2010 Jun; 19(6):1162-72. PubMed ID: 20512969 [TBL] [Abstract][Full Text] [Related]
11. The lac repressor hinge helix in context: The effect of the DNA binding domain and symmetry. Seckfort D; Lynch GC; Pettitt BM Biochim Biophys Acta Gen Subj; 2020 Apr; 1864(4):129538. PubMed ID: 31958546 [TBL] [Abstract][Full Text] [Related]
12. Comparing native and irradiated E. coli lactose repressor-operator complex by molecular dynamics simulation. Aci-Sèche S; Garnier N; Goffinont S; Genest D; Spotheim-Maurizot M; Genest M Eur Biophys J; 2010 Sep; 39(10):1375-84. PubMed ID: 20349312 [TBL] [Abstract][Full Text] [Related]
13. Altered specificity in DNA binding by the lac repressor: a mutant lac headpiece that mimics the gal repressor. Kopke Salinas R; Folkers GE; Bonvin AM; Das D; Boelens R; Kaptein R Chembiochem; 2005 Sep; 6(9):1628-37. PubMed ID: 16094693 [TBL] [Abstract][Full Text] [Related]
14. Specific interactions between lactose repressor protein and DNA affected by ligand binding: ab initio molecular orbital calculations. Ohyama T; Hayakawa M; Nishikawa S; Kurita N J Comput Chem; 2011 Jun; 32(8):1661-70. PubMed ID: 21328406 [TBL] [Abstract][Full Text] [Related]
15. Structure and flexibility adaptation in nonspecific and specific protein-DNA complexes. Kalodimos CG; Biris N; Bonvin AM; Levandoski MM; Guennuegues M; Boelens R; Kaptein R Science; 2004 Jul; 305(5682):386-9. PubMed ID: 15256668 [TBL] [Abstract][Full Text] [Related]
16. The mechanism and high-free-energy transition state of lac repressor-lac operator interaction. Sengupta R; Capp MW; Shkel IA; Record MT Nucleic Acids Res; 2017 Dec; 45(22):12671-12680. PubMed ID: 29036376 [TBL] [Abstract][Full Text] [Related]
17. A closer view of the conformation of the Lac repressor bound to operator. Bell CE; Lewis M Nat Struct Biol; 2000 Mar; 7(3):209-14. PubMed ID: 10700279 [TBL] [Abstract][Full Text] [Related]
18. Detection of protein-DNA interaction and regulation using gold nanoparticles. Fang J; Yu L; Gao P; Cai Y; Wei Y Anal Biochem; 2010 Apr; 399(2):262-7. PubMed ID: 19917263 [TBL] [Abstract][Full Text] [Related]
19. Specificity and affinity of Lac repressor for the auxiliary operators O2 and O3 are explained by the structures of their protein-DNA complexes. Romanuka J; Folkers GE; Biris N; Tishchenko E; Wienk H; Bonvin AM; Kaptein R; Boelens R J Mol Biol; 2009 Jul; 390(3):478-89. PubMed ID: 19450607 [TBL] [Abstract][Full Text] [Related]
20. Structure of the complex of lac repressor headpiece and an 11 base-pair half-operator determined by nuclear magnetic resonance spectroscopy and restrained molecular dynamics. Chuprina VP; Rullmann JA; Lamerichs RM; van Boom JH; Boelens R; Kaptein R J Mol Biol; 1993 Nov; 234(2):446-62. PubMed ID: 8230225 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]