BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

291 related articles for article (PubMed ID: 25633260)

  • 1. Effect of oxidation of carbon material on suspension electrodes for flow electrode capacitive deionization.
    Hatzell KB; Hatzell MC; Cook KM; Boota M; Housel GM; McBride A; Kumbur EC; Gogotsi Y
    Environ Sci Technol; 2015 Mar; 49(5):3040-7. PubMed ID: 25633260
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Surface-treated carbon electrodes with modified potential of zero charge for capacitive deionization.
    Wu T; Wang G; Zhan F; Dong Q; Ren Q; Wang J; Qiu J
    Water Res; 2016 Apr; 93():30-37. PubMed ID: 26878480
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Flow-Electrode Capacitive Deionization Using an Aqueous Electrolyte with a High Salt Concentration.
    Yang S; Choi J; Yeo JG; Jeon SI; Park HR; Kim DK
    Environ Sci Technol; 2016 Jun; 50(11):5892-9. PubMed ID: 27162028
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Flow-electrode capacitive deionization with highly enhanced salt removal performance utilizing high-aspect ratio functionalized carbon nanotubes.
    Cho Y; Yoo CY; Lee SW; Yoon H; Lee KS; Yang S; Kim DK
    Water Res; 2019 Mar; 151():252-259. PubMed ID: 30605773
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Improvement of desalination efficiency in capacitive deionization using a carbon electrode coated with an ion-exchange polymer.
    Kim YJ; Choi JH
    Water Res; 2010 Feb; 44(3):990-6. PubMed ID: 19896691
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Analysis of capacitive and electrodialytic contributions to water desalination by flow-electrode CDI.
    Ma J; He C; He D; Zhang C; Waite TD
    Water Res; 2018 Nov; 144():296-303. PubMed ID: 30053621
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Continuous operation of membrane capacitive deionization cells assembled with dissimilar potential of zero charge electrode pairs.
    Omosebi A; Gao X; Rentschler J; Landon J; Liu K
    J Colloid Interface Sci; 2015 May; 446():345-51. PubMed ID: 25432447
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Equivalent film-electrode model for flow-electrode capacitive deionization: Experimental validation and performance analysis.
    Wang L; Zhang C; He C; Waite TD; Lin S
    Water Res; 2020 Aug; 181():115917. PubMed ID: 32505888
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Novel graphene-like electrodes for capacitive deionization.
    Li H; Zou L; Pan L; Sun Z
    Environ Sci Technol; 2010 Nov; 44(22):8692-7. PubMed ID: 20964326
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Process model for flow-electrode capacitive deionization for energy consumption estimation and system optimization.
    Shi C; Wang H; Li A; Zhu G; Zhao X; Wu F
    Water Res; 2023 Feb; 230():119517. PubMed ID: 36608524
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Electro-enhanced removal of copper ions from aqueous solutions by capacitive deionization.
    Huang SY; Fan CS; Hou CH
    J Hazard Mater; 2014 Aug; 278():8-15. PubMed ID: 24937658
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Adsorption characteristics of vanadium on different resin-active carbon composite electrodes in capacitive deionization.
    Cui Y; Bao S; Zhang Y; Duan J
    Chemosphere; 2018 Dec; 212():34-40. PubMed ID: 30138853
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Arsenic removal from groundwater using low-cost carbon composite electrodes for capacitive deionization.
    Lee JY; Chaimongkalayon N; Lim J; Ha HY; Moon SH
    Water Sci Technol; 2016; 73(12):3064-71. PubMed ID: 27332854
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Development of Redox-Active Flow Electrodes for High-Performance Capacitive Deionization.
    Ma J; He D; Tang W; Kovalsky P; He C; Zhang C; Waite TD
    Environ Sci Technol; 2016 Dec; 50(24):13495-13501. PubMed ID: 27993056
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Preparation of a manganese dioxide/carbon fiber electrode for electrosorptive removal of copper ions from water.
    Hu C; Liu F; Lan H; Liu H; Qu J
    J Colloid Interface Sci; 2015 May; 446():359-65. PubMed ID: 25617054
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The influences of separators on capacitive deionization systems in the cycle of adsorption and desorption.
    Yao Q; Shi Z; Liu Q; Gu Z; Ning R
    Environ Sci Pollut Res Int; 2018 Feb; 25(4):3313-3319. PubMed ID: 29149445
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Recovery of V(V) from complex vanadium solution using capacitive deionization (CDI) with resin/carbon composite electrode.
    Bao S; Duan J; Zhang Y
    Chemosphere; 2018 Oct; 208():14-20. PubMed ID: 29857207
    [TBL] [Abstract][Full Text] [Related]  

  • 18. High-Performance Capacitive Deionization Disinfection of Water with Graphene Oxide-graft-Quaternized Chitosan Nanohybrid Electrode Coating.
    Wang Y; El-Deen AG; Li P; Oh BH; Guo Z; Khin MM; Vikhe YS; Wang J; Hu RG; Boom RM; Kline KA; Becker DL; Duan H; Chan-Park MB
    ACS Nano; 2015 Oct; 9(10):10142-57. PubMed ID: 26389519
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Highly porous activated carbon with multi-channeled structure derived from loofa sponge as a capacitive electrode material for the deionization of brackish water.
    Feng C; Chen YA; Yu CP; Hou CH
    Chemosphere; 2018 Oct; 208():285-293. PubMed ID: 29883863
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Flow-electrode capacitive deionization utilizing three-dimensional foam current collector for real seawater desalination.
    Zhang X; Zhou H; He Z; Zhang H; Zhao H
    Water Res; 2022 Jul; 220():118642. PubMed ID: 35635913
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 15.