BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

206 related articles for article (PubMed ID: 25633473)

  • 1. Voluntary exercise induces neurogenesis in the hypothalamus and ependymal lining of the third ventricle.
    Niwa A; Nishibori M; Hamasaki S; Kobori T; Liu K; Wake H; Mori S; Yoshino T; Takahashi H
    Brain Struct Funct; 2016 Apr; 221(3):1653-66. PubMed ID: 25633473
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Neurogenesis in the ependymal layer of the adult rat 3rd ventricle.
    Xu Y; Tamamaki N; Noda T; Kimura K; Itokazu Y; Matsumoto N; Dezawa M; Ide C
    Exp Neurol; 2005 Apr; 192(2):251-64. PubMed ID: 15755543
    [TBL] [Abstract][Full Text] [Related]  

  • 3. α-Tanycytes of the adult hypothalamic third ventricle include distinct populations of FGF-responsive neural progenitors.
    Robins SC; Stewart I; McNay DE; Taylor V; Giachino C; Goetz M; Ninkovic J; Briancon N; Maratos-Flier E; Flier JS; Kokoeva MV; Placzek M
    Nat Commun; 2013; 4():2049. PubMed ID: 23804023
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Sustained alterations of hypothalamic tanycytes during posttraumatic hypopituitarism in male mice.
    Osterstock G; El Yandouzi T; Romanò N; Carmignac D; Langlet F; Coutry N; Guillou A; Schaeffer M; Chauvet N; Vanacker C; Galibert E; Dehouck B; Robinson IC; Prévot V; Mollard P; Plesnila N; Méry PF
    Endocrinology; 2014 May; 155(5):1887-98. PubMed ID: 24601879
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Ontogeny of ependymoglial cells lining the third ventricle in mice.
    Lopez-Rodriguez D; Rohrbach A; Lanzillo M; Gervais M; Croizier S; Langlet F
    Front Endocrinol (Lausanne); 2022; 13():1073759. PubMed ID: 36686420
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The FGF2-induced tanycyte proliferation involves a connexin 43 hemichannel/purinergic-dependent pathway.
    Recabal A; Fernández P; López S; Barahona MJ; Ordenes P; Palma A; Elizondo-Vega R; Farkas C; Uribe A; Caprile T; Sáez JC; García-Robles MA
    J Neurochem; 2021 Jan; 156(2):182-199. PubMed ID: 32936929
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Rax regulates hypothalamic tanycyte differentiation and barrier function in mice.
    Miranda-Angulo AL; Byerly MS; Mesa J; Wang H; Blackshaw S
    J Comp Neurol; 2014 Mar; 522(4):876-99. PubMed ID: 23939786
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Hypothalamic neurogenesis persists in the aging brain and is controlled by energy-sensing IGF-I pathway.
    Chaker Z; George C; Petrovska M; Caron JB; Lacube P; Caillé I; Holzenberger M
    Neurobiol Aging; 2016 May; 41():64-72. PubMed ID: 27103519
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Cell proliferation and glial cell marker expression in the wall of the third ventricle in the tuberal region of the male mouse hypothalamus during postnatal development.
    Coutteau-Robles A; Prevot V; Sharif A
    J Neuroendocrinol; 2023 Mar; 35(3):e13239. PubMed ID: 36863859
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The LIM homeodomain factor Lhx2 is required for hypothalamic tanycyte specification and differentiation.
    Salvatierra J; Lee DA; Zibetti C; Duran-Moreno M; Yoo S; Newman EA; Wang H; Bedont JL; de Melo J; Miranda-Angulo AL; Gil-Perotin S; Garcia-Verdugo JM; Blackshaw S
    J Neurosci; 2014 Dec; 34(50):16809-20. PubMed ID: 25505333
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Functional interleukin-6 receptor-α is located in tanycytes at the base of the third ventricle.
    Anesten F; Santos C; Gidestrand E; Schéle E; Pálsdóttir V; Swedung-Wettervik T; Meister B; Patrycja Skibicka K; Jansson JO
    J Neuroendocrinol; 2017 Dec; 29(12):. PubMed ID: 29024103
    [TBL] [Abstract][Full Text] [Related]  

  • 12. IGF-I stimulates neurogenesis in the hypothalamus of adult rats.
    Pérez-Martín M; Cifuentes M; Grondona JM; López-Avalos MD; Gómez-Pinedo U; García-Verdugo JM; Fernández-Llebrez P
    Eur J Neurosci; 2010 May; 31(9):1533-48. PubMed ID: 20525067
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Fibroblast growth factor 10 is a negative regulator of postnatal neurogenesis in the mouse hypothalamus.
    Goodman T; Nayar SG; Clare S; Mikolajczak M; Rice R; Mansour S; Bellusci S; Hajihosseini MK
    Development; 2020 Jul; 147(13):. PubMed ID: 32661019
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The Versatile Tanycyte: A Hypothalamic Integrator of Reproduction and Energy Metabolism.
    Prevot V; Dehouck B; Sharif A; Ciofi P; Giacobini P; Clasadonte J
    Endocr Rev; 2018 Jun; 39(3):333-368. PubMed ID: 29351662
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Nestin expression and in vivo proliferative potential of tanycytes and ependymal cells lining the walls of the third ventricle in the adult rat brain.
    Hendrickson ML; Zutshi I; Wield A; Kalil RE
    Eur J Neurosci; 2018 Feb; 47(4):284-293. PubMed ID: 29359828
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Fgf10-expressing tanycytes add new neurons to the appetite/energy-balance regulating centers of the postnatal and adult hypothalamus.
    Haan N; Goodman T; Najdi-Samiei A; Stratford CM; Rice R; El Agha E; Bellusci S; Hajihosseini MK
    J Neurosci; 2013 Apr; 33(14):6170-80. PubMed ID: 23554498
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Tanycytes: a gateway to the metabolic hypothalamus.
    Langlet F
    J Neuroendocrinol; 2014 Nov; 26(11):753-60. PubMed ID: 25131689
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Two genetic rat models of arterial hypertension show different mechanisms by which adult hippocampal neurogenesis is increased.
    Kronenberg G; Lippoldt A; Kempermann G
    Dev Neurosci; 2007; 29(1-2):124-33. PubMed ID: 17148955
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Hypothalamic neurogenesis in the adult brain.
    Cheng MF
    Front Neuroendocrinol; 2013 Aug; 34(3):167-78. PubMed ID: 23684668
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Photoperiodic expression of two RALDH enzymes and the regulation of cell proliferation by retinoic acid in the rat hypothalamus.
    Shearer KD; Stoney PN; Nanescu SE; Helfer G; Barrett P; Ross AW; Morgan PJ; McCaffery P
    J Neurochem; 2012 Aug; 122(4):789-99. PubMed ID: 22681644
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.