BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

142 related articles for article (PubMed ID: 25633970)

  • 1. Development of a Bioreactor to Culture Tissue Engineered Ureters Based on the Application of Tubular OPTIMAIX 3D Scaffolds.
    Seifarth V; Gossmann M; Janke HP; Grosse JO; Becker C; Heschel I; Artmann GM; Temiz Artmann A
    Urol Int; 2015; 95(1):106-13. PubMed ID: 25633970
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Tubular Compressed Collagen Scaffolds for Ureteral Tissue Engineering in a Flow Bioreactor System.
    Vardar E; Engelhardt EM; Larsson HM; Mouloungui E; Pinnagoda K; Hubbell JA; Frey P
    Tissue Eng Part A; 2015 Sep; 21(17-18):2334-45. PubMed ID: 26065873
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Tubular collagen scaffolds with radial elasticity for hollow organ regeneration.
    Versteegden LR; van Kampen KA; Janke HP; Tiemessen DM; Hoogenkamp HR; Hafmans TG; Roozen EA; Lomme RM; van Goor H; Oosterwijk E; Feitz WF; van Kuppevelt TH; Daamen WF
    Acta Biomater; 2017 Apr; 52():1-8. PubMed ID: 28179160
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Effects of pulsatile bioreactor culture on vascular smooth muscle cells seeded on electrospun poly (lactide-co-ε-caprolactone) scaffold.
    Mun CH; Jung Y; Kim SH; Kim HC; Kim SH
    Artif Organs; 2013 Dec; 37(12):E168-78. PubMed ID: 23834728
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Development of a Bladder Bioreactor for Tissue Engineering in Urology.
    Davis NF; Callanan A
    Methods Mol Biol; 2016; 1502():213-21. PubMed ID: 26659795
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Construction and evaluation of urinary bladder bioreactor for urologic tissue-engineering purposes.
    Davis NF; Mooney R; Piterina AV; Callanan A; McGuire BB; Flood HD; McGloughlin TM
    Urology; 2011 Oct; 78(4):954-60. PubMed ID: 21982016
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Engineering skeletal muscle tissue in bioreactor systems.
    An Y; Li D
    Chin Med J (Engl); 2014; 127(23):4130-9. PubMed ID: 25430462
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Use of perfusion bioreactors and large animal models for long bone tissue engineering.
    Gardel LS; Serra LA; Reis RL; Gomes ME
    Tissue Eng Part B Rev; 2014 Apr; 20(2):126-46. PubMed ID: 23924374
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A novel axial-stress bioreactor system combined with a substance exchanger for tissue engineering of 3D constructs.
    Li ST; Liu Y; Zhou Q; Lue RF; Song L; Dong SW; Guo P; Kopjar B
    Tissue Eng Part C Methods; 2014 Mar; 20(3):205-14. PubMed ID: 23822092
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Bioreactor for biaxial mechanical stimulation to tissue engineered constructs.
    Wartella KA; Wayne JS
    J Biomech Eng; 2009 Apr; 131(4):044501. PubMed ID: 19275443
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A comparative study of shear stresses in collagen-glycosaminoglycan and calcium phosphate scaffolds in bone tissue-engineering bioreactors.
    Jungreuthmayer C; Donahue SW; Jaasma MJ; Al-Munajjed AA; Zanghellini J; Kelly DJ; O'Brien FJ
    Tissue Eng Part A; 2009 May; 15(5):1141-9. PubMed ID: 18831686
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Design and validation of a dynamic flow perfusion bioreactor for use with compliant tissue engineering scaffolds.
    Jaasma MJ; Plunkett NA; O'Brien FJ
    J Biotechnol; 2008 Feb; 133(4):490-6. PubMed ID: 18221813
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Biofabrication of customized bone grafts by combination of additive manufacturing and bioreactor knowhow.
    Costa PF; Vaquette C; Baldwin J; Chhaya M; Gomes ME; Reis RL; Theodoropoulos C; Hutmacher DW
    Biofabrication; 2014 Sep; 6(3):035006. PubMed ID: 24809431
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Contrasting effects of vasculogenic induction upon biaxial bioreactor stimulation of mesenchymal stem cells and endothelial progenitor cells cocultures in three-dimensional scaffolds under in vitro and in vivo paradigms for vascularized bone tissue engineering.
    Liu Y; Teoh SH; Chong MS; Yeow CH; Kamm RD; Choolani M; Chan JK
    Tissue Eng Part A; 2013 Apr; 19(7-8):893-904. PubMed ID: 23102089
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A dynamically cultured collagen/cells-incorporated elastic scaffold for small-diameter vascular grafts.
    Park IS; Kim YH; Jung Y; Kim SH; Kim SH
    J Biomater Sci Polym Ed; 2012; 23(14):1807-20. PubMed ID: 21943800
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Evaluation of bone formation on orthopedic implant surfaces using an ex-vivo bone bioreactor system.
    Dua R; Jones H; Noble PC
    Sci Rep; 2021 Nov; 11(1):22509. PubMed ID: 34795368
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Bioreactor design considerations for hollow organs.
    Fish J; Halberstadt C; McCoy DW; Robbins N
    Methods Mol Biol; 2013; 1001():207-14. PubMed ID: 23494432
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Bioreactors in tissue engineering - principles, applications and commercial constraints.
    Hansmann J; Groeber F; Kahlig A; Kleinhans C; Walles H
    Biotechnol J; 2013 Mar; 8(3):298-307. PubMed ID: 23161827
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Co-electrospun dual scaffolding system with potential for muscle-tendon junction tissue engineering.
    Ladd MR; Lee SJ; Stitzel JD; Atala A; Yoo JJ
    Biomaterials; 2011 Feb; 32(6):1549-59. PubMed ID: 21093046
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Construction of three-dimensional vascularized cardiac tissue with cell sheet engineering.
    Sakaguchi K; Shimizu T; Okano T
    J Control Release; 2015 May; 205():83-8. PubMed ID: 25523520
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.