These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

136 related articles for article (PubMed ID: 25633970)

  • 61. Perfusion flow bioreactor for 3D in situ imaging: investigating cell/biomaterials interactions.
    Stephens JS; Cooper JA; Phelan FR; Dunkers JP
    Biotechnol Bioeng; 2007 Jul; 97(4):952-61. PubMed ID: 17149772
    [TBL] [Abstract][Full Text] [Related]  

  • 62. Smooth muscle cell seeding of decellularized scaffolds: the importance of bioreactor preconditioning to development of a more native architecture for tissue-engineered blood vessels.
    Yazdani SK; Watts B; Machingal M; Jarajapu YP; Van Dyke ME; Christ GJ
    Tissue Eng Part A; 2009 Apr; 15(4):827-40. PubMed ID: 19290806
    [TBL] [Abstract][Full Text] [Related]  

  • 63. A miniaturized bioreactor system for the evaluation of cell interaction with designed substrates in perfusion culture.
    Sun T; Donoghue PS; Higginson JR; Gadegaard N; Barnett SC; Riehle MO
    J Tissue Eng Regen Med; 2012 Dec; 6 Suppl 3():s4-14. PubMed ID: 22170765
    [TBL] [Abstract][Full Text] [Related]  

  • 64. RETRACTED: Vascularised human tissue models: a new approach for the refinement of biomedical research.
    Schanz J; Pusch J; Hansmann J; Walles H
    J Biotechnol; 2010 Jul; 148(1):56-63. PubMed ID: 20399817
    [TBL] [Abstract][Full Text] [Related]  

  • 65. Review: bioreactor design towards generation of relevant engineered tissues: focus on clinical translation.
    Ravichandran A; Liu Y; Teoh SH
    J Tissue Eng Regen Med; 2018 Jan; 12(1):e7-e22. PubMed ID: 28374578
    [TBL] [Abstract][Full Text] [Related]  

  • 66. A Multi-Cue Bioreactor to Evaluate the Inflammatory and Regenerative Capacity of Biomaterials under Flow and Stretch.
    Koch SE; van Haaften EE; Wissing TB; Cuypers LAB; Bulsink JA; Bouten CVC; Kurniawan NA; Smits AIPM
    J Vis Exp; 2020 Dec; (166):. PubMed ID: 33369601
    [TBL] [Abstract][Full Text] [Related]  

  • 67. Advances in 3D cell culture technologies enabling tissue-like structures to be created in vitro.
    Knight E; Przyborski S
    J Anat; 2015 Dec; 227(6):746-56. PubMed ID: 25411113
    [TBL] [Abstract][Full Text] [Related]  

  • 68. Evaluation of the growth environment of a hydrostatic force bioreactor for preconditioning of tissue-engineered constructs.
    Reinwald Y; Leonard KH; Henstock JR; Whiteley JP; Osborne JM; Waters SL; Levesque P; El Haj AJ
    Tissue Eng Part C Methods; 2015 Jan; 21(1):1-14. PubMed ID: 24967717
    [TBL] [Abstract][Full Text] [Related]  

  • 69. A fiber-optic-based imaging system for nondestructive assessment of cell-seeded tissue-engineered scaffolds.
    Hofmann MC; Whited BM; Criswell T; Rylander MN; Rylander CG; Soker S; Wang G; Xu Y
    Tissue Eng Part C Methods; 2012 Sep; 18(9):677-87. PubMed ID: 22439610
    [TBL] [Abstract][Full Text] [Related]  

  • 70. Trypsin-Free Cultivation of 3D Mini-Tissues in an Adaptive Membrane Bioreactor.
    Djeljadini S; Lohaus T; Gausmann M; Rauer S; Kather M; Krause B; Pich A; Möller M; Wessling M
    Adv Biosyst; 2020 Nov; 4(11):e2000081. PubMed ID: 33089652
    [TBL] [Abstract][Full Text] [Related]  

  • 71. Design considerations and challenges for mechanical stretch bioreactors in tissue engineering.
    Lei Y; Ferdous Z
    Biotechnol Prog; 2016 May; 32(3):543-53. PubMed ID: 26929197
    [TBL] [Abstract][Full Text] [Related]  

  • 72. Advances in ex vivo models and lab-on-a-chip devices for neural tissue engineering.
    Mobini S; Song YH; McCrary MW; Schmidt CE
    Biomaterials; 2019 Apr; 198():146-166. PubMed ID: 29880219
    [TBL] [Abstract][Full Text] [Related]  

  • 73. Tubular Tissues and Organs of Human Body--Challenges in Regenerative Medicine.
    Góra A; Pliszka D; Mukherjee S; Ramakrishna S
    J Nanosci Nanotechnol; 2016 Jan; 16(1):19-39. PubMed ID: 27398431
    [TBL] [Abstract][Full Text] [Related]  

  • 74. Novel Sensor-Enabled Ex Vivo Bioreactor: A New Approach towards Physiological Parameters and Porcine Artery Viability.
    Mundargi R; Venkataraman D; Kumar S; Mogal V; Ortiz R; Loo J; Venkatraman S; Steele T
    Biomed Res Int; 2015; 2015():958170. PubMed ID: 26609536
    [TBL] [Abstract][Full Text] [Related]  

  • 75. Biomedical engineering for health research and development.
    Zhang XY
    Eur Rev Med Pharmacol Sci; 2015; 19(2):220-4. PubMed ID: 25683934
    [TBL] [Abstract][Full Text] [Related]  

  • 76. Tissue engineering of a human 3D in vitro tumor test system.
    Moll C; Reboredo J; Schwarz T; Appelt A; Schürlein S; Walles H; Nietzer S
    J Vis Exp; 2013 Aug; (78):. PubMed ID: 23963401
    [TBL] [Abstract][Full Text] [Related]  

  • 77. Tissue engineering in the development of replacement technologies.
    Shakesheff KM; Rose FR
    Adv Exp Med Biol; 2012; 745():47-57. PubMed ID: 22437812
    [TBL] [Abstract][Full Text] [Related]  

  • 78. [Bioreactors in regenerative medicine--from a technical device to a reconstructive alternative?].
    Polykandriotis E; Schmidt VJ; Kneser U; Jianming S; Boccaccini AR; Horch RE
    Handchir Mikrochir Plast Chir; 2012 Aug; 44(4):198-203. PubMed ID: 22932852
    [TBL] [Abstract][Full Text] [Related]  

  • 79. An automated fabrication strategy to create patterned tubular architectures at cell and tissue scales.
    Othman R; E Morris G; Shah DA; Hall S; Hall G; Wells K; Shakesheff KM; Dixon JE
    Biofabrication; 2015 Apr; 7(2):025003. PubMed ID: 25869447
    [TBL] [Abstract][Full Text] [Related]  

  • 80. Tissue engineering and ureter regeneration: is it possible?
    Kloskowski T; Kowalczyk T; Nowacki M; Drewa T
    Int J Artif Organs; 2013 Jun; 36(6):392-405. PubMed ID: 23645581
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.