BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

249 related articles for article (PubMed ID: 25633998)

  • 1. Reassessing breeding investment in birds: class-wide analysis of clutch volume reveals a single outlying family.
    Watson DM; Anderson SE; Olson V;
    PLoS One; 2015; 10(1):e0117678. PubMed ID: 25633998
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Tibetan birds lay larger but fewer eggs in a clutch.
    Guo Y; Lu X
    Oecologia; 2022 Apr; 198(4):1011-1018. PubMed ID: 35399127
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Orchestration of avian reproductive effort: an integration of the ultimate and proximate bases for flexibility in clutch size, incubation behaviour, and yolk androgen deposition.
    Sockman KW; Sharp PJ; Schwabl H
    Biol Rev Camb Philos Soc; 2006 Nov; 81(4):629-66. PubMed ID: 17038202
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Differential investment and costs during avian incubation determined by individual quality: an experimental study of the common eider (Somateria mollissima).
    Hanssen SA; Erikstad KE; Johnsen V; Bustnes JO
    Proc Biol Sci; 2003 Mar; 270(1514):531-7. PubMed ID: 12641909
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Age-related reproduction of female Mongolian racerunners (Eremias argus; Lacertidae): Evidence of reproductive senescence.
    Ma L; Guo K; Su S; Lin LH; Xia Y; Ji X
    J Exp Zool A Ecol Integr Physiol; 2019 Jun; 331(5):290-298. PubMed ID: 30945817
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Maternal investment in reproduction and its consequences in leatherback turtles.
    Wallace BP; Sotherland PR; Tomillo PS; Reina RD; Spotila JR; Paladino FV
    Oecologia; 2007 May; 152(1):37-47. PubMed ID: 17256173
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Red-winged blackbirds (Agelaius phoeniceus) with higher baseline glucocorticoids also invest less in incubation and clutch mass.
    Schoenle LA; Dudek AM; Moore IT; Bonier F
    Horm Behav; 2017 Apr; 90():1-7. PubMed ID: 28189642
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Condition dependent strategies of egg size variation in the Common Eider Somateria mollissima.
    Christensen TK; Balsby TJS
    PLoS One; 2020; 15(7):e0226532. PubMed ID: 32716933
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Investing in a nest egg: intraspecific variation in the timing of egg laying across a latitudinal gradient.
    Lundblad CG; Conway CJ
    Oecologia; 2023 May; 202(1):83-96. PubMed ID: 37067578
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Fitness cost of incubation in great tits (Parus major) is related to clutch size.
    de Heij ME; van den Hout PJ; Tinbergen JM
    Proc Biol Sci; 2006 Sep; 273(1599):2353-61. PubMed ID: 16928638
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Clutch size determination in shorebirds: revisiting incubation limitation in the pied avocet (Recurvirostra avosetta).
    Lengyel S; Kiss B; Tracy CR
    J Anim Ecol; 2009 Mar; 78(2):396-405. PubMed ID: 19302126
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Reproductive biology and its impact on body size: comparative analysis of mammalian, avian and dinosaurian reproduction.
    Werner J; Griebeler EM
    PLoS One; 2011; 6(12):e28442. PubMed ID: 22194835
    [TBL] [Abstract][Full Text] [Related]  

  • 13. New insights into non-avian dinosaur reproduction and their evolutionary and ecological implications: linking fossil evidence to allometries of extant close relatives.
    Werner J; Griebeler EM
    PLoS One; 2013; 8(8):e72862. PubMed ID: 23991160
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Life-history and ecological correlates of geographic variation in egg and clutch mass among passerine species.
    Martin TE; Bassar RD; Bassar SK; Fontaine JJ; Lloyd P; Mathewson HA; Niklison AM; Chalfoun A
    Evolution; 2006 Feb; 60(2):390-8. PubMed ID: 16610329
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Laying characteristics of one- and two-year old pheasants (Phasianus colchicus, L.).
    Krystianiak S; Kontecka H; Nowaczewski S; RosiƄski A
    Folia Biol (Krakow); 2007; 55(1-2):65-72. PubMed ID: 17687936
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Habitat-specific clutch size and cost of incubation in eiders reconsidered.
    Ost M; Wickman M; Matulionis E; Steele B
    Oecologia; 2008 Nov; 158(2):205-16. PubMed ID: 18795336
    [TBL] [Abstract][Full Text] [Related]  

  • 17. No experimental evidence for local competition in the nestling phase as a driving force for density-dependent avian clutch size.
    Nicolaus M; Both C; Ubels R; Edelaar P; Tinbergen JM
    J Anim Ecol; 2009 Jul; 78(4):828-38. PubMed ID: 19261035
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Origin of evolutionary change in avian clutch size.
    Haywood S
    Biol Rev Camb Philos Soc; 2013 Nov; 88(4):895-911. PubMed ID: 23521762
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Uncoupling clutch size, prolactin, and luteinizing hormone using experimental egg removal.
    Ryan CP; Dawson A; Sharp PJ; Williams TD
    Gen Comp Endocrinol; 2015 Mar; 213():1-8. PubMed ID: 25687742
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Avian egg size: variation within species and inflexibility within individuals.
    Christians JK
    Biol Rev Camb Philos Soc; 2002 Feb; 77(1):1-26. PubMed ID: 11911371
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.