BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

190 related articles for article (PubMed ID: 25634108)

  • 1. High-throughput measurements of the optical redox ratio using a commercial microplate reader.
    Cannon TM; Shah AT; Walsh AJ; Skala MC
    J Biomed Opt; 2015 Jan; 20(1):010503. PubMed ID: 25634108
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Optical metabolic imaging identifies glycolytic levels, subtypes, and early-treatment response in breast cancer.
    Walsh AJ; Cook RS; Manning HC; Hicks DJ; Lafontant A; Arteaga CL; Skala MC
    Cancer Res; 2013 Oct; 73(20):6164-74. PubMed ID: 24130112
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Optical redox ratio differentiates breast cancer cell lines based on estrogen receptor status.
    Ostrander JH; McMahon CM; Lem S; Millon SR; Brown JQ; Seewaldt VL; Ramanujam N
    Cancer Res; 2010 Jun; 70(11):4759-66. PubMed ID: 20460512
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Optical metabolic imaging of treatment response in human head and neck squamous cell carcinoma.
    Shah AT; Demory Beckler M; Walsh AJ; Jones WP; Pohlmann PR; Skala MC
    PLoS One; 2014; 9(3):e90746. PubMed ID: 24595244
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Evaluating Cell Metabolism Through Autofluorescence Imaging of NAD(P)H and FAD.
    Kolenc OI; Quinn KP
    Antioxid Redox Signal; 2019 Feb; 30(6):875-889. PubMed ID: 29268621
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Label-Free Optical Metabolic Imaging in Cells and Tissues.
    Georgakoudi I; Quinn KP
    Annu Rev Biomed Eng; 2023 Jun; 25():413-443. PubMed ID: 37104650
    [TBL] [Abstract][Full Text] [Related]  

  • 7. In Vivo Autofluorescence Imaging of Tumor Heterogeneity in Response to Treatment.
    Shah AT; Diggins KE; Walsh AJ; Irish JM; Skala MC
    Neoplasia; 2015 Dec; 17(12):862-870. PubMed ID: 26696368
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Autofluorescence lifetime imaging of cellular metabolism: Sensitivity toward cell density, pH, intracellular, and intercellular heterogeneity.
    Chacko JV; Eliceiri KW
    Cytometry A; 2019 Jan; 95(1):56-69. PubMed ID: 30296355
    [TBL] [Abstract][Full Text] [Related]  

  • 9. 3D Optical Cryo-Imaging Method: A Novel Approach to Quantify Renal Mitochondrial Bioenergetics Dysfunction.
    Mehrvar S; Camara AKS; Ranji M
    Methods Mol Biol; 2021; 2276():259-270. PubMed ID: 34060048
    [TBL] [Abstract][Full Text] [Related]  

  • 10. In vivo monitoring of cellular energy metabolism using SoNar, a highly responsive sensor for NAD(+)/NADH redox state.
    Zhao Y; Wang A; Zou Y; Su N; Loscalzo J; Yang Y
    Nat Protoc; 2016 Aug; 11(8):1345-59. PubMed ID: 27362337
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Single-cell redox states analyzed by fluorescence lifetime metrics and tryptophan FRET interaction with NAD(P)H.
    Cao R; Wallrabe H; Siller K; Rehman Alam S; Periasamy A
    Cytometry A; 2019 Jan; 95(1):110-121. PubMed ID: 30604477
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Optical imaging detects metabolic signatures associated with oocyte quality†.
    Tan TCY; Brown HM; Thompson JG; Mustafa S; Dunning KR
    Biol Reprod; 2022 Oct; 107(4):1014-1025. PubMed ID: 35863764
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Potential Indexing of the Invasiveness of Breast Cancer Cells by Mitochondrial Redox Ratios.
    Sun N; Xu HN; Luo Q; Li LZ
    Adv Exp Med Biol; 2016; 923():121-127. PubMed ID: 27526133
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Autofluorescence Imaging to Evaluate Cellular Metabolism.
    Theodossiou A; Hu L; Wang N; Nguyen U; Walsh AJ
    J Vis Exp; 2021 Nov; (177):. PubMed ID: 34842243
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Differential Expression of PGC1α in Intratumor Redox Subpopulations of Breast Cancer.
    Lin Z; Xu HN; Wang Y; Floros J; Li LZ
    Adv Exp Med Biol; 2018; 1072():177-181. PubMed ID: 30178342
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Segmented cell analyses to measure redox states of autofluorescent NAD(P)H, FAD & Trp in cancer cells by FLIM.
    Wallrabe H; Svindrych Z; Alam SR; Siller KH; Wang T; Kashatus D; Hu S; Periasamy A
    Sci Rep; 2018 Jan; 8(1):79. PubMed ID: 29311591
    [TBL] [Abstract][Full Text] [Related]  

  • 17. In vivo multiphoton microscopy of NADH and FAD redox states, fluorescence lifetimes, and cellular morphology in precancerous epithelia.
    Skala MC; Riching KM; Gendron-Fitzpatrick A; Eickhoff J; Eliceiri KW; White JG; Ramanujam N
    Proc Natl Acad Sci U S A; 2007 Dec; 104(49):19494-9. PubMed ID: 18042710
    [TBL] [Abstract][Full Text] [Related]  

  • 18. In vivo fluorescence lifetime imaging of macrophage intracellular metabolism during wound responses in zebrafish.
    Miskolci V; Tweed KE; Lasarev MR; Britt EC; Walsh AJ; Zimmerman LJ; McDougal CE; Cronan MR; Fan J; Sauer JD; Skala MC; Huttenlocher A
    Elife; 2022 Feb; 11():. PubMed ID: 35200139
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Optical Redox Imaging Detects the Effects of DEK Oncogene Knockdown on the Redox State of MDA-MB-231 Breast Cancer Cells.
    Wen Y; Xu HN; Privette Vinnedge L; Feng M; Li LZ
    Mol Imaging Biol; 2019 Jun; 21(3):410-416. PubMed ID: 30758703
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Patient-derived cancer organoid tracking with wide-field one-photon redox imaging to assess treatment response.
    Gil DA; Deming D; Skala MC
    J Biomed Opt; 2021 Mar; 26(3):. PubMed ID: 33754540
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.