BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

165 related articles for article (PubMed ID: 25634263)

  • 1. DQAsomes as the prototype of mitochondria-targeted pharmaceutical nanocarriers: preparation, characterization, and use.
    Weissig V
    Methods Mol Biol; 2015; 1265():1-11. PubMed ID: 25634263
    [TBL] [Abstract][Full Text] [Related]  

  • 2. DQAsomes as the Prototype of Mitochondria-Targeted Pharmaceutical Nanocarriers : An Update.
    Weissig V; Lozoya M; Yu N; D'Souza GGM
    Methods Mol Biol; 2021; 2275():13-25. PubMed ID: 34118029
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Transferrin coupled vesicular system for intracellular drug delivery for the treatment of cancer: development and characterization.
    Vaidya B; Vyas SP
    J Drug Target; 2012 May; 20(4):372-80. PubMed ID: 22339366
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Design and development of novel mitochondrial targeted nanocarriers, DQAsomes for curcumin inhalation.
    Zupančič Š; Kocbek P; Zariwala MG; Renshaw D; Gul MO; Elsaid Z; Taylor KM; Somavarapu S
    Mol Pharm; 2014 Jul; 11(7):2334-45. PubMed ID: 24852198
    [TBL] [Abstract][Full Text] [Related]  

  • 5. DQAsomes: a novel potential drug and gene delivery system made from Dequalinium.
    Weissig V; Lasch J; Erdos G; Meyer HW; Rowe TC; Hughes J
    Pharm Res; 1998 Feb; 15(2):334-7. PubMed ID: 9523323
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Dequalinium-based functional nanosomes show increased mitochondria targeting and anticancer effect.
    Bae Y; Jung MK; Lee S; Song SJ; Mun JY; Green ES; Han J; Ko KS; Choi JS
    Eur J Pharm Biopharm; 2018 Mar; 124():104-115. PubMed ID: 29305141
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Selective DNA release from DQAsome/DNA complexes at mitochondria-like membranes.
    Weissig V; Lizano C; Torchilin VP
    Drug Deliv; 2000; 7(1):1-5. PubMed ID: 10895413
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Dequalinium-Derived Nanoconstructs: A Promising Vehicle for Mitochondrial Targeting.
    Pawar A; Korake S; Gajbhiye KR
    Curr Drug Deliv; 2021; 18(8):1056-1063. PubMed ID: 33475059
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Nanocarrier-assisted sub-cellular targeting to the site of mitochondria improves the pro-apoptotic activity of paclitaxel.
    D'Souza GG; Cheng SM; Boddapati SV; Horobin RW; Weissig V
    J Drug Target; 2008 Aug; 16(7):578-85. PubMed ID: 18686127
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Expression of GFP in the mitochondrial compartment using DQAsome-mediated delivery of an artificial mini-mitochondrial genome.
    Lyrawati D; Trounson A; Cram D
    Pharm Res; 2011 Nov; 28(11):2848-62. PubMed ID: 21833794
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Self-assembled nanoparticles composed of glycol chitosan-dequalinium for mitochondria-targeted drug delivery.
    Mallick S; Song SJ; Bae Y; Choi JS
    Int J Biol Macromol; 2019 Jul; 132():451-460. PubMed ID: 30930268
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Mitochondria-specific nanocarriers for improving the proapoptotic activity of small molecules.
    Weissig V
    Methods Enzymol; 2012; 508():131-55. PubMed ID: 22449924
    [TBL] [Abstract][Full Text] [Related]  

  • 13. DQAsome-mediated delivery of plasmid DNA toward mitochondria in living cells.
    D'Souza GG; Rammohan R; Cheng SM; Torchilin VP; Weissig V
    J Control Release; 2003 Sep; 92(1-2):189-97. PubMed ID: 14499196
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The use of mitochondrial targeting resveratrol liposomes modified with a dequalinium polyethylene glycol-distearoylphosphatidyl ethanolamine conjugate to induce apoptosis in resistant lung cancer cells.
    Wang XX; Li YB; Yao HJ; Ju RJ; Zhang Y; Li RJ; Yu Y; Zhang L; Lu WL
    Biomaterials; 2011 Aug; 32(24):5673-87. PubMed ID: 21550109
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Mitochondrial leader sequence--plasmid DNA conjugates delivered into mammalian cells by DQAsomes co-localize with mitochondria.
    D'Souza GG; Boddapati SV; Weissig V
    Mitochondrion; 2005 Oct; 5(5):352-8. PubMed ID: 16154389
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A thermoresponsive nanocarrier for mitochondria-targeted drug delivery.
    Wang D; Huang H; Zhou M; Lu H; Chen J; Chang YT; Gao J; Chai Z; Hu Y
    Chem Commun (Camb); 2019 Apr; 55(28):4051-4054. PubMed ID: 30870553
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Delivery of bioactive molecules to the mitochondrial genome using a membrane-fusing, liposome-based carrier, DF-MITO-Porter.
    Yamada Y; Harashima H
    Biomaterials; 2012 Feb; 33(5):1589-95. PubMed ID: 22105068
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Mitochondriotropic cationic vesicles: a strategy towards mitochondrial gene therapy.
    Weissig V; Torchilin VP
    Curr Pharm Biotechnol; 2000 Dec; 1(4):325-46. PubMed ID: 11467330
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Intracellular delivery of nanoparticles with CPPs.
    Sawant R; Torchilin V
    Methods Mol Biol; 2011; 683():431-51. PubMed ID: 21053148
    [TBL] [Abstract][Full Text] [Related]  

  • 20. DQAsome/DNA complexes release DNA upon contact with isolated mouse liver mitochondria.
    Weissig V; D'Souza GG; Torchilin VP
    J Control Release; 2001 Aug; 75(3):401-8. PubMed ID: 11489326
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.