These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

202 related articles for article (PubMed ID: 25634270)

  • 1. Formulation and optimization of mitochondria-targeted polymeric nanoparticles.
    Marrache S; Pathak RK; Dhar S
    Methods Mol Biol; 2015; 1265():103-12. PubMed ID: 25634270
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Engineering of blended nanoparticle platform for delivery of mitochondria-acting therapeutics.
    Marrache S; Dhar S
    Proc Natl Acad Sci U S A; 2012 Oct; 109(40):16288-93. PubMed ID: 22991470
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Effect of the Conjugation Density of Triphenylphosphonium Cation on the Mitochondrial Targeting of Poly(amidoamine) Dendrimers.
    Bielski ER; Zhong Q; Brown M; da Rocha SR
    Mol Pharm; 2015 Aug; 12(8):3043-53. PubMed ID: 26158804
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Effect of polymer architecture on surface properties, plasma protein adsorption, and cellular interactions of pegylated nanoparticles.
    Sant S; Poulin S; Hildgen P
    J Biomed Mater Res A; 2008 Dec; 87(4):885-95. PubMed ID: 18228249
    [TBL] [Abstract][Full Text] [Related]  

  • 5. PLGA-lecithin-PEG core-shell nanoparticles for controlled drug delivery.
    Chan JM; Zhang L; Yuet KP; Liao G; Rhee JW; Langer R; Farokhzad OC
    Biomaterials; 2009 Mar; 30(8):1627-34. PubMed ID: 19111339
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Photosensitizer-mediated mitochondria-targeting nanosized drug carriers: Subcellular targeting, therapeutic, and imaging potentials.
    Choi YS; Kwon K; Yoon K; Huh KM; Kang HC
    Int J Pharm; 2017 Mar; 520(1-2):195-206. PubMed ID: 28179191
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Triphenylphosphonium Decorated Liposomes and Dendritic Polymers: Prospective Second Generation Drug Delivery Systems for Targeting Mitochondria.
    Paleos CM; Tsiourvas D; Sideratou Z
    Mol Pharm; 2016 Jul; 13(7):2233-41. PubMed ID: 27280339
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Polymeric nanoparticles for drug delivery.
    Chan JM; Valencia PM; Zhang L; Langer R; Farokhzad OC
    Methods Mol Biol; 2010; 624():163-75. PubMed ID: 20217595
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Targeted delivery of geranylgeranylacetone to mitochondria by triphenylphosphonium modified nanoparticles: a promising strategy to prevent aminoglycoside-induced hearing loss.
    Wang Z; Kuang X; Shi J; Guo W; Liu H
    Biomater Sci; 2017 Aug; 5(9):1800-1809. PubMed ID: 28650045
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Triphenylphosphonium-conjugated glycol chitosan microspheres for mitochondria-targeted drug delivery.
    Lee YH; Park HI; Chang WS; Choi JS
    Int J Biol Macromol; 2021 Jan; 167():35-45. PubMed ID: 33227331
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Small angle neutron scattering studies on the internal structure of poly(lactide-co-glycolide)-block-poly(ethylene glycol) nanoparticles as drug delivery vehicles.
    Yang B; Lowe JP; Schweins R; Edler KJ
    Biomacromolecules; 2015 Feb; 16(2):457-64. PubMed ID: 25539145
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Transferrin-conjugated nanoparticles of poly(lactide)-D-alpha-tocopheryl polyethylene glycol succinate diblock copolymer for targeted drug delivery across the blood-brain barrier.
    Gan CW; Feng SS
    Biomaterials; 2010 Oct; 31(30):7748-57. PubMed ID: 20673685
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Redox-triggered activation of nanocarriers for mitochondria-targeting cancer chemotherapy.
    Zhou W; Yu H; Zhang LJ; Wu B; Wang CX; Wang Q; Deng K; Zhuo RX; Huang SW
    Nanoscale; 2017 Nov; 9(43):17044-17053. PubMed ID: 29083424
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Micelles Loaded With Puerarin And Modified With Triphenylphosphonium Cation Possess Mitochondrial Targeting And Demonstrate Enhanced Protective Effect Against Isoprenaline-Induced H9c2 Cells Apoptosis.
    Li WQ; Wu JY; Xiang DX; Luo SL; Hu XB; Tang TT; Sun TL; Liu XY
    Int J Nanomedicine; 2019; 14():8345-8360. PubMed ID: 31695371
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Characterization of rhodamine loaded PEG-g-PLA nanoparticles (NPs): effect of poly(ethylene glycol) grafting density.
    Essa S; Rabanel JM; Hildgen P
    Int J Pharm; 2011 Jun; 411(1-2):178-87. PubMed ID: 21458551
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Synthesis and characterization of pH-responsive and folated nanoparticles based on self-assembled brush-like PLGA/PEG/AEMA copolymer with targeted cancer therapy properties: A comprehensive kinetic study.
    Khoee S; Rahmatolahzadeh R
    Eur J Med Chem; 2012 Apr; 50():416-27. PubMed ID: 22397922
    [TBL] [Abstract][Full Text] [Related]  

  • 17. On the design of in situ forming biodegradable parenteral depot systems based on insulin loaded dialkylaminoalkyl-amine-poly(vinyl alcohol)-g-poly(lactide-co-glycolide) nanoparticles.
    Packhaeuser CB; Kissel T
    J Control Release; 2007 Nov; 123(2):131-40. PubMed ID: 17854938
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Microporous structure and drug release kinetics of polymeric nanoparticles.
    Sant S; Thommes M; Hildgen P
    Langmuir; 2008 Jan; 24(1):280-7. PubMed ID: 18052222
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Design of surface-modified poly(D,L-lactide-co-glycolide) nanoparticles for targeted drug delivery to bone.
    Choi SW; Kim JH
    J Control Release; 2007 Sep; 122(1):24-30. PubMed ID: 17628158
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Lipid-polymer hybrid nanoparticles as a new generation therapeutic delivery platform: a review.
    Hadinoto K; Sundaresan A; Cheow WS
    Eur J Pharm Biopharm; 2013 Nov; 85(3 Pt A):427-43. PubMed ID: 23872180
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.