BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

578 related articles for article (PubMed ID: 25634357)

  • 21. Effect of PUVA therapy on melanocytes and keratinocytes in non-segmental vitiligo: histopathological, immuno-histochemical and ultrastructural study.
    Anbar TS; El-Sawy AE; Attia SK; Barakat MT; Moftah NH; El-Ammawy TS; Abdel-Rahman AT; El-Tonsy MH
    Photodermatol Photoimmunol Photomed; 2012 Feb; 28(1):17-25. PubMed ID: 22211999
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Expression of discoidin domain receptor 1 and E-cadherin in epidermis affects melanocyte behavior in rhododendrol-induced leukoderma mouse model.
    Abe Y; Hozumi Y; Okamura K; Suzuki T
    J Dermatol; 2020 Nov; 47(11):1330-1334. PubMed ID: 32770866
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Immunohistochemical expression of aberrant Notch-1 signaling in vitiligo: an implication for pathogenesis.
    Seleit I; Bakry OA; Abdou AG; Dawoud NM
    Ann Diagn Pathol; 2014 Jun; 18(3):117-24. PubMed ID: 24560443
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Melanocyte Adhesion and Apoptosis in Vitiligo: Linking Puzzle Blocks.
    Srivastava N; Gupta S; Parsad D
    Curr Mol Med; 2023; 23(8):709-711. PubMed ID: 35726816
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Vitiligo: Focus on Clinical Aspects, Immunopathogenesis, and Therapy.
    Boniface K; Seneschal J; Picardo M; Taïeb A
    Clin Rev Allergy Immunol; 2018 Feb; 54(1):52-67. PubMed ID: 28685247
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Histamine effect on melanocyte proliferation and vitiliginous keratinocyte survival.
    Kim NH; Lee AY
    Exp Dermatol; 2010 Dec; 19(12):1073-9. PubMed ID: 21054556
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Immunohistochemical expression of AQP-3 in vitiligo: a new potential guide for disease activity.
    Hodeib A; Hegab D; Rizk O; Mohammed S
    G Ital Dermatol Venereol; 2017 Aug; 152(4):348-354. PubMed ID: 26923934
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Ecad vitiliGONE.
    Levy C; Khaled M
    Pigment Cell Melanoma Res; 2015 Jul; 28(4):376-7. PubMed ID: 25864372
    [No Abstract]   [Full Text] [Related]  

  • 29. Immunohistochemical study of melanocyte-melanocyte stem cell lineage in vitiligo; a clue to interfollicular melanocyte stem cell reservoir.
    Seleit I; Bakry OA; Abdou AG; Dawoud NM
    Ultrastruct Pathol; 2014 May; 38(3):186-98. PubMed ID: 24460782
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Less keratinocyte-derived factors related to more keratinocyte apoptosis in depigmented than normally pigmented suction-blistered epidermis may cause passive melanocyte death in vitiligo.
    Lee AY; Kim NH; Choi WI; Youm YH
    J Invest Dermatol; 2005 May; 124(5):976-83. PubMed ID: 15854039
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Melanocytes and keratinocytes morphological changes in vitiligo patients. A histological, immunohistochemical and ultrastructural analysis.
    Elsherif R; Mahmoud WA; Mohamed RR
    Ultrastruct Pathol; 2022 Mar; 46(2):217-235. PubMed ID: 35243959
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Vitiligo: where do we stand?
    Ortonne JP; Bose SK
    Pigment Cell Res; 1993 Mar; 6(2):61-72. PubMed ID: 8321867
    [TBL] [Abstract][Full Text] [Related]  

  • 33. MicroRNA-155 is Dysregulated in the Skin of Patients with Vitiligo and Inhibits Melanogenesis-associated Genes in Melanocytes and Keratinocytes.
    Šahmatova L; Tankov S; Prans E; Aab A; Hermann H; Reemann P; Pihlap M; Karelson M; Abram K; Kisand K; Kingo K; Rebane A
    Acta Derm Venereol; 2016 Aug; 96(6):742-7. PubMed ID: 26941046
    [TBL] [Abstract][Full Text] [Related]  

  • 34. RNA-seq Reveals Dysregulation of Novel Melanocyte Genes upon Oxidative Stress: Implications in Vitiligo Pathogenesis.
    Sastry KS; Naeem H; Mokrab Y; Chouchane AI
    Oxid Med Cell Longev; 2019; 2019():2841814. PubMed ID: 31871544
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Water Buffalo (Bubalus bubalis) as a spontaneous animal model of Vitiligo.
    Singh VP; Motiani RK; Singh A; Malik G; Aggarwal R; Pratap K; Wani MR; Gokhale SB; Natarajan VT; Gokhale RS
    Pigment Cell Melanoma Res; 2016 Jul; 29(4):465-9. PubMed ID: 27124831
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Aberrant ETS-1 signalling impedes the expression of cell adhesion molecules and matrix metalloproteinases in non-segmental vitiligo.
    Srivastava N; Bishnoi A; Mehta S; Rani S; Kumar R; Bhardwaj S; Sendhil Kumaran M; Keshavamurthy V; Gupta S; Parsad D
    Exp Dermatol; 2020 Jun; 29(6):539-547. PubMed ID: 32350934
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Epidermal reconstructs in vitiligo: an extrinsic factor is needed to trigger the disease.
    Bessou S; Gauthier Y; Surlève-Bazeille JE; Pain C; Taïeb A
    Br J Dermatol; 1997 Dec; 137(6):890-7. PubMed ID: 9470904
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Treatment update for vitiligo based on autoimmune inhibition and melanocyte protection.
    Xie B; Zhu Y; Shen Y; Xu W; Song X
    Expert Opin Ther Targets; 2023 Mar; 27(3):189-206. PubMed ID: 36947026
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Epidermal melanocytes in segmental vitiligo show altered expression of E-cadherin, but not P-cadherin.
    Grill C; Benzekri L; Rubod A; Aktary Z; Ezzedine K; Taïeb A; Gauthier Y; Larue L; Delmas V
    Br J Dermatol; 2018 May; 178(5):1204-1206. PubMed ID: 29341072
    [No Abstract]   [Full Text] [Related]  

  • 40. Isolating RNA from precursor and mature melanocytes from human vitiligo and normal skin using laser capture microdissection.
    Goldstein NB; Koster MI; Hoaglin LG; Wright MJ; Robinson SE; Robinson WA; Roop DR; Norris DA; Birlea SA
    Exp Dermatol; 2016 Oct; 25(10):805-11. PubMed ID: 27193292
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 29.