These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
312 related articles for article (PubMed ID: 25634548)
1. ¹³C-based metabolic flux analysis of Saccharomyces cerevisiae with a reduced Crabtree effect. Kajihata S; Matsuda F; Yoshimi M; Hayakawa K; Furusawa C; Kanda A; Shimizu H J Biosci Bioeng; 2015 Aug; 120(2):140-4. PubMed ID: 25634548 [TBL] [Abstract][Full Text] [Related]
2. Energetic aspects of glucose metabolism in a pyruvate-dehydrogenase-negative mutant of Saccharomyces cerevisiae. Pronk JT; Wenzel TJ; Luttik MA; Klaassen CC; Scheffers WA; Steensma HY; van Dijken JP Microbiology (Reading); 1994 Mar; 140 ( Pt 3)():601-10. PubMed ID: 8012582 [TBL] [Abstract][Full Text] [Related]
3. Engineering acetyl coenzyme A supply: functional expression of a bacterial pyruvate dehydrogenase complex in the cytosol of Saccharomyces cerevisiae. Kozak BU; van Rossum HM; Luttik MA; Akeroyd M; Benjamin KR; Wu L; de Vries S; Daran JM; Pronk JT; van Maris AJ mBio; 2014 Oct; 5(5):e01696-14. PubMed ID: 25336454 [TBL] [Abstract][Full Text] [Related]
4. Metabolomics approach to reduce the Crabtree effect in continuous culture of Saccharomyces cerevisiae. Imura M; Iwakiri R; Bamba T; Fukusaki E J Biosci Bioeng; 2018 Aug; 126(2):183-188. PubMed ID: 29685822 [TBL] [Abstract][Full Text] [Related]
5. Inactivation of the Kluyveromyces lactis KlPDA1 gene leads to loss of pyruvate dehydrogenase activity, impairs growth on glucose and triggers aerobic alcoholic fermentation. Zeeman AM; Luttik MAH; Thiele C; van Dijken JP; Pronk JT; Steensma HY Microbiology (Reading); 1998 Dec; 144 ( Pt 12)():3437-3446. PubMed ID: 9884236 [TBL] [Abstract][Full Text] [Related]
8. Aerobic physiology of redox-engineered Saccharomyces cerevisiae strains modified in the ammonium assimilation for increased NADPH availability. Moreira dos Santos M; Thygesen G; Kötter P; Olsson L; Nielsen J FEMS Yeast Res; 2003 Oct; 4(1):59-68. PubMed ID: 14554197 [TBL] [Abstract][Full Text] [Related]
9. Enzymic analysis of the crabtree effect in glucose-limited chemostat cultures of Saccharomyces cerevisiae. Postma E; Verduyn C; Scheffers WA; Van Dijken JP Appl Environ Microbiol; 1989 Feb; 55(2):468-77. PubMed ID: 2566299 [TBL] [Abstract][Full Text] [Related]
10. Steady-state and transient-state analyses of aerobic fermentation in Saccharomyces kluyveri. Møller K; Bro C; Piskur J; Nielsen J; Olsson L FEMS Yeast Res; 2002 May; 2(2):233-44. PubMed ID: 12702311 [TBL] [Abstract][Full Text] [Related]
11. Scheffersomyces stipitis: a comparative systems biology study with the Crabtree positive yeast Saccharomyces cerevisiae. Papini M; Nookaew I; Uhlén M; Nielsen J Microb Cell Fact; 2012 Oct; 11():136. PubMed ID: 23043429 [TBL] [Abstract][Full Text] [Related]
12. Alternative reactions at the interface of glycolysis and citric acid cycle in Saccharomyces cerevisiae. van Rossum HM; Kozak BU; Niemeijer MS; Duine HJ; Luttik MA; Boer VM; Kötter P; Daran JM; van Maris AJ; Pronk JT FEMS Yeast Res; 2016 May; 16(3):. PubMed ID: 26895788 [TBL] [Abstract][Full Text] [Related]
13. Oxygen dependence of metabolic fluxes and energy generation of Saccharomyces cerevisiae CEN.PK113-1A. Jouhten P; Rintala E; Huuskonen A; Tamminen A; Toivari M; Wiebe M; Ruohonen L; Penttilä M; Maaheimo H BMC Syst Biol; 2008 Jul; 2():60. PubMed ID: 18613954 [TBL] [Abstract][Full Text] [Related]
14. Reprogramming Yeast Metabolism from Alcoholic Fermentation to Lipogenesis. Yu T; Zhou YJ; Huang M; Liu Q; Pereira R; David F; Nielsen J Cell; 2018 Sep; 174(6):1549-1558.e14. PubMed ID: 30100189 [TBL] [Abstract][Full Text] [Related]
15. Modeling threshold phenomena, metabolic pathways switches and signals in chemostat-cultivated cells: the Crabtree effect in Saccharomyces cerevisiae. Thierie J J Theor Biol; 2004 Feb; 226(4):483-501. PubMed ID: 14759654 [TBL] [Abstract][Full Text] [Related]
16. Heterologous phosphoketolase expression redirects flux towards acetate, perturbs sugar phosphate pools and increases respiratory demand in Saccharomyces cerevisiae. Bergman A; Hellgren J; Moritz T; Siewers V; Nielsen J; Chen Y Microb Cell Fact; 2019 Feb; 18(1):25. PubMed ID: 30709397 [TBL] [Abstract][Full Text] [Related]
18. Steady-state and transient-state analysis of growth and metabolite production in a Saccharomyces cerevisiae strain with reduced pyruvate-decarboxylase activity. Flikweert MT; Kuyper M; van Maris AJ; Kötter P; van Dijken JP; Pronk JT Biotechnol Bioeng; 1999; 66(1):42-50. PubMed ID: 10556793 [TBL] [Abstract][Full Text] [Related]
19. Oleic acid delays and modulates the transition from respiratory to fermentative metabolism in Saccharomyces cerevisiae after exposure to glucose excess. Feria-Gervasio D; Mouret JR; Gorret N; Goma G; Guillouet SE Appl Microbiol Biotechnol; 2008 Feb; 78(2):319-31. PubMed ID: 17909788 [TBL] [Abstract][Full Text] [Related]
20. Expressing a cytosolic pyruvate dehydrogenase complex to increase free fatty acid production in Saccharomyces cerevisiae. Zhang Y; Su M; Qin N; Nielsen J; Liu Z Microb Cell Fact; 2020 Dec; 19(1):226. PubMed ID: 33302960 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]