These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
208 related articles for article (PubMed ID: 25635004)
1. Predicting the response of the injured lung to the mechanical breath profile. Smith BJ; Lundblad LK; Kollisch-Singule M; Satalin J; Nieman G; Habashi N; Bates JH J Appl Physiol (1985); 2015 Apr; 118(7):932-40. PubMed ID: 25635004 [TBL] [Abstract][Full Text] [Related]
2. Mechanical breath profile of airway pressure release ventilation: the effect on alveolar recruitment and microstrain in acute lung injury. Kollisch-Singule M; Emr B; Smith B; Roy S; Jain S; Satalin J; Snyder K; Andrews P; Habashi N; Bates J; Marx W; Nieman G; Gatto LA JAMA Surg; 2014 Nov; 149(11):1138-45. PubMed ID: 25230047 [TBL] [Abstract][Full Text] [Related]
3. Variability of Tidal Volume in Patient-Triggered Mechanical Ventilation in ARDS. Perinel-Ragey S; Baboi L; Guérin C Respir Care; 2017 Nov; 62(11):1437-1446. PubMed ID: 28765493 [TBL] [Abstract][Full Text] [Related]
4. Airway pressure release ventilation prevents ventilator-induced lung injury in normal lungs. Emr B; Gatto LA; Roy S; Satalin J; Ghosh A; Snyder K; Andrews P; Habashi N; Marx W; Ge L; Wang G; Dean DA; Vodovotz Y; Nieman G JAMA Surg; 2013 Nov; 148(11):1005-12. PubMed ID: 24026214 [TBL] [Abstract][Full Text] [Related]
5. Early application of airway pressure release ventilation may reduce the duration of mechanical ventilation in acute respiratory distress syndrome. Zhou Y; Jin X; Lv Y; Wang P; Yang Y; Liang G; Wang B; Kang Y Intensive Care Med; 2017 Nov; 43(11):1648-1659. PubMed ID: 28936695 [TBL] [Abstract][Full Text] [Related]
6. Intratidal Overdistention and Derecruitment in the Injured Lung: A Simulation Study. Amini R; Herrmann J; Kaczka DW IEEE Trans Biomed Eng; 2017 Mar; 64(3):681-689. PubMed ID: 27244715 [TBL] [Abstract][Full Text] [Related]
7. Early stabilizing alveolar ventilation prevents acute respiratory distress syndrome: a novel timing-based ventilatory intervention to avert lung injury. Roy S; Sadowitz B; Andrews P; Gatto LA; Marx W; Ge L; Wang G; Lin X; Dean DA; Kuhn M; Ghosh A; Satalin J; Snyder K; Vodovotz Y; Nieman G; Habashi N J Trauma Acute Care Surg; 2012 Aug; 73(2):391-400. PubMed ID: 22846945 [TBL] [Abstract][Full Text] [Related]
8. Early airway pressure release ventilation prevents ARDS-a novel preventive approach to lung injury. Roy S; Habashi N; Sadowitz B; Andrews P; Ge L; Wang G; Roy P; Ghosh A; Kuhn M; Satalin J; Gatto LA; Lin X; Dean DA; Vodovotz Y; Nieman G Shock; 2013 Jan; 39(1):28-38. PubMed ID: 23247119 [TBL] [Abstract][Full Text] [Related]
9. Ventilator strategies for posttraumatic acute respiratory distress syndrome: airway pressure release ventilation and the role of spontaneous breathing in critically ill patients. Habashi N; Andrews P Curr Opin Crit Care; 2004 Dec; 10(6):549-57. PubMed ID: 15616399 [TBL] [Abstract][Full Text] [Related]
10. Protective ventilation in a pig model of acute lung injury: timing is as important as pressure. Ramcharran H; Bates JHT; Satalin J; Blair S; Andrews PL; Gaver DP; Gatto LA; Wang G; Ghosh AJ; Robedee B; Vossler J; Habashi NM; Daphtary N; Kollisch-Singule M; Nieman GF J Appl Physiol (1985); 2022 Nov; 133(5):1093-1105. PubMed ID: 36135956 [TBL] [Abstract][Full Text] [Related]
12. Optimizing positive end-expiratory pressure by oscillatory mechanics minimizes tidal recruitment and distension: an experimental study in a lavage model of lung injury. Zannin E; Dellaca RL; Kostic P; Pompilio PP; Larsson A; Pedotti A; Hedenstierna G; Frykholm P Crit Care; 2012 Nov; 16(6):R217. PubMed ID: 23134702 [TBL] [Abstract][Full Text] [Related]
13. Should Airway Pressure Release Ventilation Be the Primary Mode in ARDS? Mireles-Cabodevila E; Kacmarek RM Respir Care; 2016 Jun; 61(6):761-73. PubMed ID: 27235312 [TBL] [Abstract][Full Text] [Related]
14. Validation of at-the-bedside formulae for estimating ventilator driving pressure during airway pressure release ventilation using computer simulation. Mistry S; Das A; Saffaran S; Yehya N; Scott TE; Chikhani M; Laffey JG; Hardman JG; Camporota L; Bates DG Respir Res; 2022 Apr; 23(1):101. PubMed ID: 35473715 [TBL] [Abstract][Full Text] [Related]
15. Airway pressure release ventilation: what do we know? Daoud EG; Farag HL; Chatburn RL Respir Care; 2012 Feb; 57(2):282-92. PubMed ID: 21762559 [TBL] [Abstract][Full Text] [Related]
16. Respiratory controversies in the critical care setting. Does airway pressure release ventilation offer important new advantages in mechanical ventilator support? Myers TR; MacIntyre NR Respir Care; 2007 Apr; 52(4):452-8; discussion 458-60. PubMed ID: 17417979 [TBL] [Abstract][Full Text] [Related]
17. Predicting ventilator-induced lung injury using a lung injury cost function. Hamlington KL; Smith BJ; Allen GB; Bates JH J Appl Physiol (1985); 2016 Jul; 121(1):106-14. PubMed ID: 27174922 [TBL] [Abstract][Full Text] [Related]
18. [The clinical effect of airway pressure release ventilation for acute lung injury/acute respiratory distress syndrome]. Song S; Tian H; Yang X; Hu Z Zhonghua Wei Zhong Bing Ji Jiu Yi Xue; 2016 Jan; 28(1):15-21. PubMed ID: 26805529 [TBL] [Abstract][Full Text] [Related]
19. Tidal volume is a major determinant of cyclic recruitment-derecruitment in acute respiratory distress syndrome. Bruhn A; Bugedo D; Riquelme F; Varas J; Retamal J; Besa C; Cabrera C; Bugedo G Minerva Anestesiol; 2011 Apr; 77(4):418-26. PubMed ID: 21483386 [TBL] [Abstract][Full Text] [Related]
20. Comparison of "open lung" modes with low tidal volumes in a porcine lung injury model. Albert S; Kubiak BD; Vieau CJ; Roy SK; DiRocco J; Gatto LA; Young JL; Tripathi S; Trikha G; Lopez C; Nieman GF J Surg Res; 2011 Mar; 166(1):e71-81. PubMed ID: 21195426 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]