BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

317 related articles for article (PubMed ID: 25635344)

  • 1. Relative effectiveness at 1 gy after acute and fractionated exposures of heavy ions with different linear energy transfer for lung tumorigenesis.
    Wang X; Farris Iii AB; Wang P; Zhang X; Wang H; Wang Y
    Radiat Res; 2015 Feb; 183(2):233-9. PubMed ID: 25635344
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Lessons learned using different mouse models during space radiation-induced lung tumorigenesis experiments.
    Wang J; Zhang X; Wang P; Wang X; Farris AB; Wang Y
    Life Sci Space Res (Amst); 2016 Jun; 9():48-55. PubMed ID: 27345200
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Relative Biological Effectiveness of Energetic Heavy Ions for Intestinal Tumorigenesis Shows Male Preponderance and Radiation Type and Energy Dependence in APC(1638N/+) Mice.
    Suman S; Kumar S; Moon BH; Strawn SJ; Thakor H; Fan Z; Shay JW; Fornace AJ; Datta K
    Int J Radiat Oncol Biol Phys; 2016 May; 95(1):131-138. PubMed ID: 26725728
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Relative effectiveness of HZE iron-56 particles for the induction of cytogenetic damage in vivo.
    Brooks A; Bao S; Rithidech K; Couch LA; Braby LA
    Radiat Res; 2001 Feb; 155(2):353-9. PubMed ID: 11175671
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Adaptive response of low linear energy transfer X-rays for protection against high linear energy transfer accelerated heavy ion-induced teratogenesis.
    Wang B; Ninomiya Y; Tanaka K; Maruyama K; Varès G; Eguchi-Kasai K; Nenoi M
    Birth Defects Res B Dev Reprod Toxicol; 2012 Dec; 95(6):379-85. PubMed ID: 23109298
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Risk cross sections and their application to risk estimation in the galactic cosmic-ray environment.
    Curtis SB; Nealy JE; Wilson JW
    Radiat Res; 1995 Jan; 141(1):57-65. PubMed ID: 7997515
    [TBL] [Abstract][Full Text] [Related]  

  • 7. X-ray-induced radioresistance against high-LET radiations from accelerated heavy ions in mice.
    Wang B; Tanaka K; Varès G; Shang Y; Fujita K; Ninomiya Y; Nakajima T; Eguchi-Kasai K; Nenoi M
    Radiat Res; 2010 Oct; 174(4):532-6. PubMed ID: 20726713
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Low and high dose rate heavy ion radiation-induced intestinal and colonic tumorigenesis in APC
    Suman S; Kumar S; Moon BH; Fornace AJ; Datta K
    Life Sci Space Res (Amst); 2017 May; 13():45-50. PubMed ID: 28554509
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Safe days in space with acceptable uncertainty from space radiation exposure.
    Cucinotta FA; Alp M; Rowedder B; Kim MH
    Life Sci Space Res (Amst); 2015 Apr; 5():31-8. PubMed ID: 26177847
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Understanding cancer development processes after HZE-particle exposure: roles of ROS, DNA damage repair and inflammation.
    Sridharan DM; Asaithamby A; Bailey SM; Costes SV; Doetsch PW; Dynan WS; Kronenberg A; Rithidech KN; Saha J; Snijders AM; Werner E; Wiese C; Cucinotta FA; Pluth JM
    Radiat Res; 2015 Jan; 183(1):1-26. PubMed ID: 25564719
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Harderian Gland Tumorigenesis: Low-Dose and LET Response.
    Chang PY; Cucinotta FA; Bjornstad KA; Bakke J; Rosen CJ; Du N; Fairchild DG; Cacao E; Blakely EA
    Radiat Res; 2016 May; 185(5):449-60. PubMed ID: 27092765
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Predictions of space radiation fatality risk for exploration missions.
    Cucinotta FA; To K; Cacao E
    Life Sci Space Res (Amst); 2017 May; 13():1-11. PubMed ID: 28554504
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Physical and biological studies with protons and HZE particles in a NASA supported research center in radiation health.
    Chatterjee A; Borak TH
    Phys Med; 2001; 17 Suppl 1():59-66. PubMed ID: 11770539
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Biological characterization of low-energy ions with high-energy deposition on human cells.
    Saha J; Wilson P; Thieberger P; Lowenstein D; Wang M; Cucinotta FA
    Radiat Res; 2014 Sep; 182(3):282-91. PubMed ID: 25098728
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Incidence of acute myeloid leukemia and hepatocellular carcinoma in mice irradiated with 1 GeV/nucleon (56)Fe ions.
    Weil MM; Bedford JS; Bielefeldt-Ohmann H; Ray FA; Genik PC; Ehrhart EJ; Fallgren CM; Hailu F; Battaglia CL; Charles B; Callan MA; Ullrich RL
    Radiat Res; 2009 Aug; 172(2):213-9. PubMed ID: 19630525
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Animal studies of charged particle-induced carcinogenesis.
    Bielefeldt-Ohmann H; Genik PC; Fallgren CM; Ullrich RL; Weil MM
    Health Phys; 2012 Nov; 103(5):568-76. PubMed ID: 23032886
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Monte Carlo mixture model of lifetime cancer incidence risk from radiation exposure on shuttle and international space station.
    Peterson LE; Cucinotta FA
    Mutat Res; 1999 Dec; 430(2):327-35. PubMed ID: 10631348
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Cataractogenesis from high-LET radiation and the Casarett model.
    Cox AB; Ainsworth EJ; Jose JG; Lee AC; Lett JT
    Adv Space Res; 1983; 3(8):211-9. PubMed ID: 11542748
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Tumor induction in mice after local irradiation with single doses of either carbon-ion beams or gamma rays.
    Ando K; Koike S; Ohmachi Y; Ando Y; Kobashi G
    Int J Radiat Biol; 2014 Dec; 90(12):1119-24. PubMed ID: 24923475
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Enhanced intestinal tumor multiplicity and grade in vivo after HZE exposure: mouse models for space radiation risk estimates.
    Trani D; Datta K; Doiron K; Kallakury B; Fornace AJ
    Radiat Environ Biophys; 2010 Aug; 49(3):389-96. PubMed ID: 20490531
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 16.