These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
151 related articles for article (PubMed ID: 25635348)
1. Arsenic biotransformation in solid waste residue: comparison of contributions from bacteria with arsenate and iron reducing pathways. Tian H; Shi Q; Jing C Environ Sci Technol; 2015 Feb; 49(4):2140-6. PubMed ID: 25635348 [TBL] [Abstract][Full Text] [Related]
2. Biotransformation of adsorbed arsenic on iron minerals by coexisting arsenate-reducing and arsenite-oxidizing bacteria. Ye L; Wang L; Jing C Environ Pollut; 2020 Jan; 256():113471. PubMed ID: 31677878 [TBL] [Abstract][Full Text] [Related]
3. Differential arsenic mobilization from As-bearing ferrihydrite by iron-respiring Shewanella strains with different arsenic-reducing activities. Jiang S; Lee JH; Kim D; Kanaly RA; Kim MG; Hur HG Environ Sci Technol; 2013 Aug; 47(15):8616-23. PubMed ID: 23802758 [TBL] [Abstract][Full Text] [Related]
4. Arsenic mobilization in spent nZVI waste residue: Effect of Pantoea sp. IMH. Ye L; Liu W; Shi Q; Jing C Environ Pollut; 2017 Nov; 230():1081-1089. PubMed ID: 28764124 [TBL] [Abstract][Full Text] [Related]
5. Bacillus sp. SXB and Pantoea sp. IMH, aerobic As(V)-reducing bacteria isolated from arsenic-contaminated soil. Wu Q; Du J; Zhuang G; Jing C J Appl Microbiol; 2013 Mar; 114(3):713-21. PubMed ID: 23210693 [TBL] [Abstract][Full Text] [Related]
6. [Redox Transformation of Arsenic and Antimony in Soils Mediated by Zhang L; Lu JS Huan Jing Ke Xue; 2017 Sep; 38(9):3937-3943. PubMed ID: 29965277 [TBL] [Abstract][Full Text] [Related]
7. Arsenic(V) Incorporation in Vivianite during Microbial Reduction of Arsenic(V)-Bearing Biogenic Fe(III) (Oxyhydr)oxides. Muehe EM; Morin G; Scheer L; Pape PL; Esteve I; Daus B; Kappler A Environ Sci Technol; 2016 Mar; 50(5):2281-91. PubMed ID: 26828118 [TBL] [Abstract][Full Text] [Related]
8. Arsenic biotransformation in industrial wastewater treatment residue: Effect of co-existing Shewanella sp. ANA-3 and MR-1. Li H; Zhang L; Ye L; Jing C J Environ Sci (China); 2022 Aug; 118():14-20. PubMed ID: 35305762 [TBL] [Abstract][Full Text] [Related]
9. Comparison of arsenate reduction and release by three As(V)-reducing bacteria isolated from arsenic-contaminated soil of Inner Mongolia, China. Cai X; Zhang Z; Yin N; Du H; Li Z; Cui Y Chemosphere; 2016 Oct; 161():200-207. PubMed ID: 27427777 [TBL] [Abstract][Full Text] [Related]
10. Biotransformation and biomethylation of arsenic by Shewanella oneidensis MR-1. Wang J; Wu M; Lu G; Si Y Chemosphere; 2016 Feb; 145():329-35. PubMed ID: 26692509 [TBL] [Abstract][Full Text] [Related]
11. Arsenic mobilization in nZVI residue by Alkaliphilus sp. IMB: Comparison between static and flowing incubation. Ye L; Tian H; Jing C Environ Pollut; 2023 Feb; 319():121019. PubMed ID: 36621712 [TBL] [Abstract][Full Text] [Related]
12. arrA is a reliable marker for As(V) respiration. Malasarn D; Saltikov CW; Campbell KM; Santini JM; Hering JG; Newman DK Science; 2004 Oct; 306(5695):455. PubMed ID: 15486292 [TBL] [Abstract][Full Text] [Related]
13. Mutational and gene expression analysis of mtrDEF, omcA and mtrCAB during arsenate and iron reduction in Shewanella sp. ANA-3. Reyes C; Murphy JN; Saltikov CW Environ Microbiol; 2010 Jul; 12(7):1878-88. PubMed ID: 20236164 [TBL] [Abstract][Full Text] [Related]
14. Shewanella sp. O23S as a Driving Agent of a System Utilizing Dissimilatory Arsenate-Reducing Bacteria Responsible for Self-Cleaning of Water Contaminated with Arsenic. Drewniak L; Stasiuk R; Uhrynowski W; Sklodowska A Int J Mol Sci; 2015 Jun; 16(7):14409-27. PubMed ID: 26121297 [TBL] [Abstract][Full Text] [Related]
15. Transformation of arsenic in offshore sediment under the impact of anaerobic microbial activities. Xu L; Zhao Z; Wang S; Pan R; Jia Y Water Res; 2011 Dec; 45(20):6781-8. PubMed ID: 22071325 [TBL] [Abstract][Full Text] [Related]
16. Arsenic redox transformation by Pseudomonas sp. HN-2 isolated from arsenic-contaminated soil in Hunan, China. Zhang Z; Yin N; Cai X; Wang Z; Cui Y J Environ Sci (China); 2016 Sep; 47():165-173. PubMed ID: 27593283 [TBL] [Abstract][Full Text] [Related]
17. The effect of microbial sulfidogenesis on the stability of As-Fe coprecipitate with low Fe/As molar ratio under anaerobic conditions. Wang S; He XY; Pan R; Xu L; Wang X; Jia Y Environ Sci Pollut Res Int; 2016 Apr; 23(8):7267-77. PubMed ID: 26676545 [TBL] [Abstract][Full Text] [Related]
19. Effect of iron reduction by enolic hydroxyl groups on the stability of scorodite in hydrometallurgical industries and arsenic mobilization. Yuan Z; Wang S; Ma X; Wang X; Zhang G; Jia Y; Zheng W Environ Sci Pollut Res Int; 2017 Dec; 24(34):26534-26544. PubMed ID: 28948427 [TBL] [Abstract][Full Text] [Related]
20. Release of arsenic from soil by a novel dissimilatory arsenate-reducing bacterium, Anaeromyxobacter sp. strain PSR-1. Kudo K; Yamaguchi N; Makino T; Ohtsuka T; Kimura K; Dong DT; Amachi S Appl Environ Microbiol; 2013 Aug; 79(15):4635-42. PubMed ID: 23709511 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]