BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

156 related articles for article (PubMed ID: 25635348)

  • 1. Arsenic biotransformation in solid waste residue: comparison of contributions from bacteria with arsenate and iron reducing pathways.
    Tian H; Shi Q; Jing C
    Environ Sci Technol; 2015 Feb; 49(4):2140-6. PubMed ID: 25635348
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Biotransformation of adsorbed arsenic on iron minerals by coexisting arsenate-reducing and arsenite-oxidizing bacteria.
    Ye L; Wang L; Jing C
    Environ Pollut; 2020 Jan; 256():113471. PubMed ID: 31677878
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Differential arsenic mobilization from As-bearing ferrihydrite by iron-respiring Shewanella strains with different arsenic-reducing activities.
    Jiang S; Lee JH; Kim D; Kanaly RA; Kim MG; Hur HG
    Environ Sci Technol; 2013 Aug; 47(15):8616-23. PubMed ID: 23802758
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Arsenic mobilization in spent nZVI waste residue: Effect of Pantoea sp. IMH.
    Ye L; Liu W; Shi Q; Jing C
    Environ Pollut; 2017 Nov; 230():1081-1089. PubMed ID: 28764124
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Bacillus sp. SXB and Pantoea sp. IMH, aerobic As(V)-reducing bacteria isolated from arsenic-contaminated soil.
    Wu Q; Du J; Zhuang G; Jing C
    J Appl Microbiol; 2013 Mar; 114(3):713-21. PubMed ID: 23210693
    [TBL] [Abstract][Full Text] [Related]  

  • 6. [Redox Transformation of Arsenic and Antimony in Soils Mediated by
    Zhang L; Lu JS
    Huan Jing Ke Xue; 2017 Sep; 38(9):3937-3943. PubMed ID: 29965277
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Arsenic(V) Incorporation in Vivianite during Microbial Reduction of Arsenic(V)-Bearing Biogenic Fe(III) (Oxyhydr)oxides.
    Muehe EM; Morin G; Scheer L; Pape PL; Esteve I; Daus B; Kappler A
    Environ Sci Technol; 2016 Mar; 50(5):2281-91. PubMed ID: 26828118
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Arsenic biotransformation in industrial wastewater treatment residue: Effect of co-existing Shewanella sp. ANA-3 and MR-1.
    Li H; Zhang L; Ye L; Jing C
    J Environ Sci (China); 2022 Aug; 118():14-20. PubMed ID: 35305762
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Comparison of arsenate reduction and release by three As(V)-reducing bacteria isolated from arsenic-contaminated soil of Inner Mongolia, China.
    Cai X; Zhang Z; Yin N; Du H; Li Z; Cui Y
    Chemosphere; 2016 Oct; 161():200-207. PubMed ID: 27427777
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Biotransformation and biomethylation of arsenic by Shewanella oneidensis MR-1.
    Wang J; Wu M; Lu G; Si Y
    Chemosphere; 2016 Feb; 145():329-35. PubMed ID: 26692509
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Arsenic mobilization in nZVI residue by Alkaliphilus sp. IMB: Comparison between static and flowing incubation.
    Ye L; Tian H; Jing C
    Environ Pollut; 2023 Feb; 319():121019. PubMed ID: 36621712
    [TBL] [Abstract][Full Text] [Related]  

  • 12. arrA is a reliable marker for As(V) respiration.
    Malasarn D; Saltikov CW; Campbell KM; Santini JM; Hering JG; Newman DK
    Science; 2004 Oct; 306(5695):455. PubMed ID: 15486292
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Mutational and gene expression analysis of mtrDEF, omcA and mtrCAB during arsenate and iron reduction in Shewanella sp. ANA-3.
    Reyes C; Murphy JN; Saltikov CW
    Environ Microbiol; 2010 Jul; 12(7):1878-88. PubMed ID: 20236164
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Shewanella sp. O23S as a Driving Agent of a System Utilizing Dissimilatory Arsenate-Reducing Bacteria Responsible for Self-Cleaning of Water Contaminated with Arsenic.
    Drewniak L; Stasiuk R; Uhrynowski W; Sklodowska A
    Int J Mol Sci; 2015 Jun; 16(7):14409-27. PubMed ID: 26121297
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Transformation of arsenic in offshore sediment under the impact of anaerobic microbial activities.
    Xu L; Zhao Z; Wang S; Pan R; Jia Y
    Water Res; 2011 Dec; 45(20):6781-8. PubMed ID: 22071325
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Arsenic redox transformation by Pseudomonas sp. HN-2 isolated from arsenic-contaminated soil in Hunan, China.
    Zhang Z; Yin N; Cai X; Wang Z; Cui Y
    J Environ Sci (China); 2016 Sep; 47():165-173. PubMed ID: 27593283
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The effect of microbial sulfidogenesis on the stability of As-Fe coprecipitate with low Fe/As molar ratio under anaerobic conditions.
    Wang S; He XY; Pan R; Xu L; Wang X; Jia Y
    Environ Sci Pollut Res Int; 2016 Apr; 23(8):7267-77. PubMed ID: 26676545
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Expression dynamics of arsenic respiration and detoxification in Shewanella sp. strain ANA-3.
    Saltikov CW; Wildman RA; Newman DK
    J Bacteriol; 2005 Nov; 187(21):7390-6. PubMed ID: 16237022
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Effect of iron reduction by enolic hydroxyl groups on the stability of scorodite in hydrometallurgical industries and arsenic mobilization.
    Yuan Z; Wang S; Ma X; Wang X; Zhang G; Jia Y; Zheng W
    Environ Sci Pollut Res Int; 2017 Dec; 24(34):26534-26544. PubMed ID: 28948427
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Release of arsenic from soil by a novel dissimilatory arsenate-reducing bacterium, Anaeromyxobacter sp. strain PSR-1.
    Kudo K; Yamaguchi N; Makino T; Ohtsuka T; Kimura K; Dong DT; Amachi S
    Appl Environ Microbiol; 2013 Aug; 79(15):4635-42. PubMed ID: 23709511
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.