BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

156 related articles for article (PubMed ID: 25635348)

  • 21. Arsenate reduction and mobilization in the presence of indigenous aerobic bacteria obtained from high arsenic aquifers of the Hetao basin, Inner Mongolia.
    Guo H; Liu Z; Ding S; Hao C; Xiu W; Hou W
    Environ Pollut; 2015 Aug; 203():50-59. PubMed ID: 25863882
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Rethinking anaerobic As(III) oxidation in filters: Effect of indigenous nitrate respirers.
    Cui J; Du J; Tian H; Chan T; Jing C
    Chemosphere; 2018 Apr; 196():223-230. PubMed ID: 29304460
    [TBL] [Abstract][Full Text] [Related]  

  • 23. The cymA gene, encoding a tetraheme c-type cytochrome, is required for arsenate respiration in Shewanella species.
    Murphy JN; Saltikov CW
    J Bacteriol; 2007 Mar; 189(6):2283-90. PubMed ID: 17209025
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Mobilization and transformation of arsenic from ternary complex OM-Fe(III)-As(V) in the presence of As(V)-reducing bacteria.
    Cai X; Wang P; Li Z; Li Y; Yin N; Du H; Cui Y
    J Hazard Mater; 2020 Jan; 381():120975. PubMed ID: 31445471
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Quantifying Microbially Mediated Kinetics of Ferrihydrite Transformation and Arsenic Reduction: Role of the Arsenate-Reducing Gene Expression Pattern.
    Shi Z; Hu S; Lin J; Liu T; Li X; Li F
    Environ Sci Technol; 2020 Jun; 54(11):6621-6631. PubMed ID: 32352764
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Performance of a zerovalent iron reactive barrier for the treatment of arsenic in groundwater: Part 2. Geochemical modeling and solid phase studies.
    Beak DG; Wilkin RT
    J Contam Hydrol; 2009 Apr; 106(1-2):15-28. PubMed ID: 19167132
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Anaerobic microbial mobilization and biotransformation of arsenate adsorbed onto activated alumina.
    Sierra-Alvarez R; Field JA; Cortinas I; Feijoo G; Teresa Moreira M; Kopplin M; Jay Gandolfi A
    Water Res; 2005 Jan; 39(1):199-209. PubMed ID: 15607178
    [TBL] [Abstract][Full Text] [Related]  

  • 28. The role of dissimilatory arsenate reducing bacteria in the biogeochemical cycle of arsenic based on the physiological and functional analysis of Aeromonas sp. O23A.
    Uhrynowski W; Debiec K; Sklodowska A; Drewniak L
    Sci Total Environ; 2017 Nov; 598():680-689. PubMed ID: 28454040
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Biochar increases arsenic release from an anaerobic paddy soil due to enhanced microbial reduction of iron and arsenic.
    Wang N; Xue XM; Juhasz AL; Chang ZZ; Li HB
    Environ Pollut; 2017 Jan; 220(Pt A):514-522. PubMed ID: 27720546
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Sulfate enhances the dissimilatory arsenate-respiring prokaryotes-mediated mobilization, reduction and release of insoluble arsenic and iron from the arsenic-rich sediments into groundwater.
    Wang J; Zeng XC; Zhu X; Chen X; Zeng X; Mu Y; Yang Y; Wang Y
    J Hazard Mater; 2017 Oct; 339():409-417. PubMed ID: 28686931
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Arsenic uptake and speciation in Arabidopsis thaliana under hydroponic conditions.
    Park JH; Han YS; Seong HJ; Ahn JS; Nam IH
    Chemosphere; 2016 Jul; 154():283-288. PubMed ID: 27058920
    [TBL] [Abstract][Full Text] [Related]  

  • 32. [Migration and Transformation of Adsorbed Arsenic Mediated by Sulfate Reducing Bacteria].
    Jia QQ; Li W; Wang YN; Duan JM; Liu YC
    Huan Jing Ke Xue; 2019 Jan; 40(1):430-436. PubMed ID: 30628302
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Role of indigenous arsenate and iron(III) respiring microorganisms in controlling the mobilization of arsenic in a contaminated soil sample.
    Vaxevanidou K; Christou C; Kremmydas GF; Georgakopoulos DG; Papassiopi N
    Bull Environ Contam Toxicol; 2015 Mar; 94(3):282-8. PubMed ID: 25588567
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Transport implications resulting from internal redistribution of arsenic and iron within constructed soil aggregates.
    Masue-Slowey Y; Kocar BD; Jofré SA; Mayer KU; Fendorf S
    Environ Sci Technol; 2011 Jan; 45(2):582-8. PubMed ID: 21158450
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Shewanella oneidensis MR-1-Induced Fe(III) Reduction Facilitates Roxarsone Transformation.
    Chen G; Ke Z; Liang T; Liu L; Wang G
    PLoS One; 2016; 11(4):e0154017. PubMed ID: 27100323
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Promoted reduction of tellurite and formation of extracellular tellurium nanorods by concerted reaction between iron and Shewanella oneidensis MR-1.
    Kim DH; Kim MG; Jiang S; Lee JH; Hur HG
    Environ Sci Technol; 2013 Aug; 47(15):8709-15. PubMed ID: 23802169
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Effect of sulfide on As(III) and As(V) sequestration by ferrihydrite.
    Zhao Z; Wang S; Jia Y
    Chemosphere; 2017 Oct; 185():321-328. PubMed ID: 28704663
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Effects of microbially induced transformations and shift in bacterial community on arsenic mobility in arsenic-rich deep aquifer sediments.
    Das S; Liu CC; Jean JS; Lee CC; Yang HJ
    J Hazard Mater; 2016 Jun; 310():11-9. PubMed ID: 26897570
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Reductive dissolution of As-bearing iron oxides: Mediating mechanism of fulvic acid and dissimilated iron reducing bacteria.
    Liu Y; Zhang X; Zheng J; He J; Lü C
    Sci Total Environ; 2024 Jul; 935():173443. PubMed ID: 38782281
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Arsenic mobilization by epilithic bacterial communities associated with volcanic rocks from Camarones River, Atacama Desert, northern Chile.
    Campos VL; León C; Mondaca MA; Yañez J; Zaror C
    Arch Environ Contam Toxicol; 2011 Aug; 61(2):185-92. PubMed ID: 20859623
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.