These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

156 related articles for article (PubMed ID: 25635348)

  • 41. The effects of biochar as the electron shuttle on the ferrihydrite reduction and related arsenic (As) fate.
    Wu C; An W; Liu Z; Lin J; Qian Z; Xue S
    J Hazard Mater; 2020 May; 390():121391. PubMed ID: 31780288
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Impact of birnessite on arsenic and iron speciation during microbial reduction of arsenic-bearing ferrihydrite.
    Ehlert K; Mikutta C; Kretzschmar R
    Environ Sci Technol; 2014 Oct; 48(19):11320-9. PubMed ID: 25243611
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Diversity and arsenic-metabolizing gene clusters of indigenous arsenate-reducing bacteria in high arsenic groundwater of the Hetao Plain, Inner Mongolia.
    Wang Y; Wei D; Li P; Jiang Z; Liu H; Qing C; Wang H
    Ecotoxicology; 2021 Oct; 30(8):1680-1688. PubMed ID: 33196984
    [TBL] [Abstract][Full Text] [Related]  

  • 44. An indigenous bacterium Bacillus XZM for phosphate enhanced transformation and migration of arsenate.
    Wang J; Xie Z; Wei X; Chen M; Luo Y; Wang Y
    Sci Total Environ; 2020 Jun; 719():137183. PubMed ID: 32120093
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Regulation and mechanism of pyrite and humic acid on the toxicity of arsenate in lettuce.
    Wen J; Tang X; Wang M; Mu L; Hao W; Weng J; Gao Z; Hu X
    Sci Total Environ; 2024 Feb; 912():168980. PubMed ID: 38040366
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Dissimilatory Arsenate Reduction and In Situ Microbial Activities and Diversity in Arsenic-rich Groundwater of Chianan Plain, Southwestern Taiwan.
    Das S; Liu CC; Jean JS; Liu T
    Microb Ecol; 2016 Feb; 71(2):365-74. PubMed ID: 26219267
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Phosphate enhanced abiotic and biotic arsenic mobilization in the wetland rhizosphere.
    Zhang Z; Moon HS; Myneni SCB; Jaffé PR
    Chemosphere; 2017 Nov; 187():130-139. PubMed ID: 28846968
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Enhanced bioreduction of iron and arsenic in sediment by biochar amendment influencing microbial community composition and dissolved organic matter content and composition.
    Chen Z; Wang Y; Xia D; Jiang X; Fu D; Shen L; Wang H; Li QB
    J Hazard Mater; 2016 Jul; 311():20-9. PubMed ID: 26954472
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Arsenic speciation and mobilization in CCA-contaminated soils: influence of organic matter content.
    Dobran S; Zagury GJ
    Sci Total Environ; 2006 Jul; 364(1-3):239-50. PubMed ID: 16055167
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Fate of Fe and Cd upon microbial reduction of Cd-loaded polyferric flocs by Shewanella oneidensis MR-1.
    Li C; Yi X; Dang Z; Yu H; Zeng T; Wei C; Feng C
    Chemosphere; 2016 Feb; 144():2065-72. PubMed ID: 26583288
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Arsenic release from flooded paddy soils is influenced by speciation, Eh, pH, and iron dissolution.
    Yamaguchi N; Nakamura T; Dong D; Takahashi Y; Amachi S; Makino T
    Chemosphere; 2011 May; 83(7):925-32. PubMed ID: 21420713
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Effect of microbially mediated iron mineral transformation on temporal variation of arsenic in the Pleistocene aquifers of the central Yangtze River basin.
    Deng Y; Zheng T; Wang Y; Liu L; Jiang H; Ma T
    Sci Total Environ; 2018 Apr; 619-620():1247-1258. PubMed ID: 29734603
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Bacteria and genes involved in arsenic speciation in sediment impacted by long-term gold mining.
    Costa PS; Scholte LL; Reis MP; Chaves AV; Oliveira PL; Itabayana LB; Suhadolnik ML; Barbosa FA; Chartone-Souza E; Nascimento AM
    PLoS One; 2014; 9(4):e95655. PubMed ID: 24755825
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Genomic Analysis of
    Uhrynowski W; Radlinska M; Drewniak L
    Int J Mol Sci; 2019 Feb; 20(5):. PubMed ID: 30813619
    [No Abstract]   [Full Text] [Related]  

  • 55. Effects of Fe-S-As coupled redox processes on arsenic mobilization in shallow aquifers of Datong Basin, northern China.
    Zhang J; Ma T; Yan Y; Xie X; Abass OK; Liu C; Zhao Z; Wang Z
    Environ Pollut; 2018 Jun; 237():28-38. PubMed ID: 29466772
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Microbial Sulfate Reduction Enhances Arsenic Mobility Downstream of Zerovalent-Iron-Based Permeable Reactive Barrier.
    Kumar N; Couture RM; Millot R; Battaglia-Brunet F; Rose J
    Environ Sci Technol; 2016 Jul; 50(14):7610-7. PubMed ID: 27309856
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Micro-colonization of arsenic-resistant Staphylococcus sp. As-3 on arsenopyrite (FeAsS) drives arsenic mobilization under anoxic sub-surface mimicking conditions.
    Rathod J; Jean JS; Jiang WT; Huang IH; Liu BH; Lee YC
    Sci Total Environ; 2019 Jun; 669():527-539. PubMed ID: 30884274
    [TBL] [Abstract][Full Text] [Related]  

  • 58. The ecology of arsenic.
    Oremland RS; Stolz JF
    Science; 2003 May; 300(5621):939-44. PubMed ID: 12738852
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Arsenic dissolution from Japanese paddy soil by a dissimilatory arsenate-reducing bacterium Geobacter sp. OR-1.
    Ohtsuka T; Yamaguchi N; Makino T; Sakurai K; Kimura K; Kudo K; Homma E; Dong DT; Amachi S
    Environ Sci Technol; 2013 Jun; 47(12):6263-71. PubMed ID: 23668621
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Geochemistry of redox-sensitive elements and sulfur isotopes in the high arsenic groundwater system of Datong Basin, China.
    Xie X; Ellis A; Wang Y; Xie Z; Duan M; Su C
    Sci Total Environ; 2009 Jun; 407(12):3823-35. PubMed ID: 19344934
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.