These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
131 related articles for article (PubMed ID: 25635381)
1. The content of phenolic compounds in leaf tissues of Aesculus glabra and Aesculus parviflora walt. Oszmiański J; Kolniak-Ostek J; Biernat A Molecules; 2015 Jan; 20(2):2176-89. PubMed ID: 25635381 [TBL] [Abstract][Full Text] [Related]
2. The content of phenolic compounds in leaf tissues of white (Aesculus hippocastanum L.) and red horse chestnut (Aesculus carea H.) colonized by the horse chestnut leaf miner (Cameraria ohridella Deschka & Dimić). Oszmiański J; Kalisz S; Aneta W Molecules; 2014 Sep; 19(9):14625-36. PubMed ID: 25225723 [TBL] [Abstract][Full Text] [Related]
3. Aesculus pavia foliar saponins: defensive role against the leafminer Cameraria ohridella. Ferracini C; Curir P; Dolci M; Lanzotti V; Alma A Pest Manag Sci; 2010 Jul; 66(7):767-72. PubMed ID: 20217891 [TBL] [Abstract][Full Text] [Related]
4. Influence of leaf damage by the horse chestnut leafminer (Cameraria ohridella Deschka & Dimić) on mycorrhiza of Aesculus hippocastanum L. Tyburska-Woś J; Nowak K; Kieliszewska-Rokicka B Mycorrhiza; 2019 Jan; 29(1):61-67. PubMed ID: 30145614 [TBL] [Abstract][Full Text] [Related]
5. Volatile emissions from Aesculus hippocastanum induced by mining of larval stages of Cameraria ohridella influence oviposition by conspecific females. Johne AB; Weissbecker B; Schütz S J Chem Ecol; 2006 Oct; 32(10):2303-19. PubMed ID: 17001531 [TBL] [Abstract][Full Text] [Related]
6. Phenolic-Based Discrimination between Non-Symptomatic and Symptomatic Leaves of Hanaka A; Dresler S; Mułenko W; Wójciak M; Sowa I; Sawic M; Stanisławek K; Strzemski M Int J Mol Sci; 2023 Sep; 24(18):. PubMed ID: 37762372 [TBL] [Abstract][Full Text] [Related]
7. The Secondary Metabolites Profile in Horse Chestnut Leaves Infested with Horse-Chestnut Leaf Miner. Materska M; Pabich M; Sachadyn-Król M; Konarska A; Weryszko-Chmielewska E; Chilczuk B; Staszowska-Karkut M; Jackowska I; Dmitruk M Molecules; 2022 Aug; 27(17):. PubMed ID: 36080239 [TBL] [Abstract][Full Text] [Related]
8. Phenolic Assesment of Uncaria tomentosa L. (Cat's Claw): Leaves, Stem, Bark and Wood Extracts. Navarro Hoyos M; Sánchez-Patán F; Murillo Masis R; Martín-Álvarez PJ; Zamora Ramirez W; Monagas MJ; Bartolomé B Molecules; 2015 Dec; 20(12):22703-17. PubMed ID: 26694348 [TBL] [Abstract][Full Text] [Related]
9. Leafminers help us understand leaf hydraulic design. Nardini A; Raimondo F; Lo Gullo MA; Salleo S Plant Cell Environ; 2010 Jul; 33(7):1091-100. PubMed ID: 20199625 [TBL] [Abstract][Full Text] [Related]
10. The effects of cold stress on the phenolic compounds and antioxidant capacity of grapevine (Vitis vinifera L.) leaves. Król A; Amarowicz R; Weidner S J Plant Physiol; 2015 Sep; 189():97-104. PubMed ID: 26555272 [TBL] [Abstract][Full Text] [Related]
11. Phenolic Compounds and Bioactivity of Healthy and Infected Grapevine Leaf Extracts from Red Varieties Merlot and Vranac (Vitis vinifera L.). Anđelković M; Radovanović B; Anđelković AM; Radovanović V Plant Foods Hum Nutr; 2015 Sep; 70(3):317-23. PubMed ID: 26174183 [TBL] [Abstract][Full Text] [Related]
12. Fractionation and structural characterization of polyphenolic antioxidants from seed shells of Japanese horse chestnut (Aesculus turbinata BLUME). Ogawa S; Kimura H; Niimi A; Katsube T; Jisaka M; Yokota K J Agric Food Chem; 2008 Dec; 56(24):12046-51. PubMed ID: 19053354 [TBL] [Abstract][Full Text] [Related]
13. Modification of esterified cell wall phenolics increases vulnerability of tall fescue to herbivory by the fall armyworm. de O Buanafina MM; Fescemyer HW Planta; 2012 Aug; 236(2):513-23. PubMed ID: 22434315 [TBL] [Abstract][Full Text] [Related]
14. Induction of cell wall phenolic monomers as part of direct defense response in maize to pink stem borer (Sesamia inferens Walker) and non-insect interactions. Soujanya PL; Sekhar JC; Ratnavathi CV; Karjagi CG; Shobha E; Suby SB; Yathish KR; Sunil N; Rakshit S Sci Rep; 2021 Jul; 11(1):14770. PubMed ID: 34285266 [TBL] [Abstract][Full Text] [Related]
15. Defensive changes in maize leaves induced by feeding of Mediterranean corn borer larvae. Santiago R; Cao A; Butrón A; López-Malvar A; Rodríguez VM; Sandoya GV; Malvar RA BMC Plant Biol; 2017 Feb; 17(1):44. PubMed ID: 28202014 [TBL] [Abstract][Full Text] [Related]
16. Residues of diflubenzuron on horse chestnut (Aesculus hippocastanum) leaves and their efficacy against the horse chestnut leafminer, Cameraria ohridella. Nejmanová J; Cvacka J; Hrdý I; Kuldová J; Mertelík J; Muck A; Nesnerová P; Svatos A Pest Manag Sci; 2006 Mar; 62(3):274-8. PubMed ID: 16475222 [TBL] [Abstract][Full Text] [Related]
17. Capability of Lactobacillus plantarum IFPL935 to catabolize flavan-3-ol compounds and complex phenolic extracts. Sánchez-Patán F; Tabasco R; Monagas M; Requena T; Peláez C; Moreno-Arribas MV; Bartolomé B J Agric Food Chem; 2012 Jul; 60(29):7142-51. PubMed ID: 22646528 [TBL] [Abstract][Full Text] [Related]
18. Solar UV-B radiation modulates chemical defenses against Anticarsia gemmatalis larvae in leaves of field-grown soybean. Dillon FM; Chludil HD; Zavala JA Phytochemistry; 2017 Sep; 141():27-36. PubMed ID: 28551080 [TBL] [Abstract][Full Text] [Related]
19. Changing the content of phenolic compounds as the response of blackcurrant (Ribes nigrum L.) leaves after blackcurrant leaf midge (Dasineura tetensi Rübs.) infestation. Piotrowski W; Oszmiański J; Wojdyło A; Łabanowska BH Plant Physiol Biochem; 2016 Sep; 106():149-58. PubMed ID: 27161581 [TBL] [Abstract][Full Text] [Related]
20. Differentiation of the phenolic chemical profiles of Cecropia pachystachya and Cecropia hololeuca. da Silva Mathias M; Rodrigues de Oliveira R Phytochem Anal; 2019 Jan; 30(1):73-82. PubMed ID: 30144200 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]