BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

208 related articles for article (PubMed ID: 25635390)

  • 1. Probabilistic clustering of the human connectome identifies communities and hubs.
    Hinne M; Ekman M; Janssen RJ; Heskes T; van Gerven MA
    PLoS One; 2015; 10(1):e0117179. PubMed ID: 25635390
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Optimizing Connectivity-Driven Brain Parcellation Using Ensemble Clustering.
    Kurmukov A; Mussabaeva A; Denisova Y; Moyer D; Jahanshad N; Thompson PM; Gutman BA
    Brain Connect; 2020 May; 10(4):183-194. PubMed ID: 32264696
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Individual variability in the anatomical distribution of nodes participating in rich club structural networks.
    Kocher M; Gleichgerrcht E; Nesland T; Rorden C; Fridriksson J; Spampinato MV; Bonilha L
    Front Neural Circuits; 2015; 9():16. PubMed ID: 25954161
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Functional Connectivity-Based Parcellation of the Thalamus: An Unsupervised Clustering Method and Its Validity Investigation.
    Fan Y; Nickerson LD; Li H; Ma Y; Lyu B; Miao X; Zhuo Y; Ge J; Zou Q; Gao JH
    Brain Connect; 2015 Dec; 5(10):620-30. PubMed ID: 26106821
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Connectivity-based parcellation of the amygdala and identification of its main white matter connections.
    Avecillas-Chasin JM; Levinson S; Kuhn T; Omidbeigi M; Langevin JP; Pouratian N; Bari A
    Sci Rep; 2023 Jan; 13(1):1305. PubMed ID: 36693904
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Brain parcellation based on information theory.
    Bonmati E; Bardera A; Boada I
    Comput Methods Programs Biomed; 2017 Nov; 151():203-212. PubMed ID: 28947002
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Cortical parcellation based on structural connectivity: A case for generative models.
    Tittgemeyer M; Rigoux L; Knösche TR
    Neuroimage; 2018 Jun; 173():592-603. PubMed ID: 29407457
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Agreement between functional connectivity and cortical thickness-driven correlation maps of the medial frontal cortex.
    Park H; Park YH; Cha J; Seo SW; Na DL; Lee JM
    PLoS One; 2017; 12(3):e0171803. PubMed ID: 28328993
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Brain parcellation selection: An overlooked decision point with meaningful effects on individual differences in resting-state functional connectivity.
    Bryce NV; Flournoy JC; Guassi Moreira JF; Rosen ML; Sambook KA; Mair P; McLaughlin KA
    Neuroimage; 2021 Nov; 243():118487. PubMed ID: 34419594
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Connectome analysis with diffusion MRI in idiopathic Parkinson's disease: Evaluation using multi-shell, multi-tissue, constrained spherical deconvolution.
    Kamagata K; Zalesky A; Hatano T; Di Biase MA; El Samad O; Saiki S; Shimoji K; Kumamaru KK; Kamiya K; Hori M; Hattori N; Aoki S; Pantelis C
    Neuroimage Clin; 2018; 17():518-529. PubMed ID: 29201640
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Preterm birth leads to impaired rich-club organization and fronto-paralimbic/limbic structural connectivity in newborns.
    Sa de Almeida J; Meskaldji DE; Loukas S; Lordier L; Gui L; Lazeyras F; Hüppi PS
    Neuroimage; 2021 Jan; 225():117440. PubMed ID: 33039621
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Parcellating connectivity in spatial maps.
    Baldassano C; Beck DM; Fei-Fei L
    PeerJ; 2015; 3():e784. PubMed ID: 25737822
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Subdivision of Broca's region based on individual-level functional connectivity.
    Jakobsen E; Böttger J; Bellec P; Geyer S; Rübsamen R; Petrides M; Margulies DS
    Eur J Neurosci; 2016 Feb; 43(4):561-71. PubMed ID: 26613367
    [TBL] [Abstract][Full Text] [Related]  

  • 14. T-distribution stochastic neighbor embedding for fine brain functional parcellation on rs-fMRI.
    Hu Y; Li X; Wang L; Han B; Nie S
    Brain Res Bull; 2020 Sep; 162():199-207. PubMed ID: 32603775
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Alcohol use in emerging adults associated with lower rich-club connectivity and greater connectome network disorganization.
    Hua JPY; de Lange SC; van den Heuvel MP; Boness CL; Trela CJ; McDowell YE; Merrill AM; Piasecki TM; Sher KJ; Kerns JG
    Drug Alcohol Depend; 2022 Jan; 230():109198. PubMed ID: 34861495
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Disrupted rich club network in behavioral variant frontotemporal dementia and early-onset Alzheimer's disease.
    Daianu M; Mezher A; Mendez MF; Jahanshad N; Jimenez EE; Thompson PM
    Hum Brain Mapp; 2016 Mar; 37(3):868-83. PubMed ID: 26678225
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The structural-functional connectome and the default mode network of the human brain.
    Horn A; Ostwald D; Reisert M; Blankenburg F
    Neuroimage; 2014 Nov; 102 Pt 1():142-51. PubMed ID: 24099851
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The parcellation-based connectome: limitations and extensions.
    de Reus MA; van den Heuvel MP
    Neuroimage; 2013 Oct; 80():397-404. PubMed ID: 23558097
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Defining functional SMA and pre-SMA subregions in human MFC using resting state fMRI: functional connectivity-based parcellation method.
    Kim JH; Lee JM; Jo HJ; Kim SH; Lee JH; Kim ST; Seo SW; Cox RW; Na DL; Kim SI; Saad ZS
    Neuroimage; 2010 Feb; 49(3):2375-86. PubMed ID: 19837176
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Human brain mapping: A systematic comparison of parcellation methods for the human cerebral cortex.
    Arslan S; Ktena SI; Makropoulos A; Robinson EC; Rueckert D; Parisot S
    Neuroimage; 2018 Apr; 170():5-30. PubMed ID: 28412442
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.