These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

140 related articles for article (PubMed ID: 25635408)

  • 1. Validity of Physical Activity Monitors for Estimating Energy Expenditure During Wheelchair Propulsion.
    Conger SA; Scott SN; Fitzhugh EC; Thompson DL; Bassett DR
    J Phys Act Health; 2015 Nov; 12(11):1520-6. PubMed ID: 25635408
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Predicting energy expenditure through hand rim propulsion power output in individuals who use wheelchairs.
    Conger SA; Scott SN; Bassett DR
    Br J Sports Med; 2014 Jul; 48(13):1048-53. PubMed ID: 24825852
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Estimation of Energy Expenditure for Wheelchair Users Using a Physical Activity Monitoring System.
    Hiremath SV; Intille SS; Kelleher A; Cooper RA; Ding D
    Arch Phys Med Rehabil; 2016 Jul; 97(7):1146-1153.e1. PubMed ID: 26976800
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Evaluation of activity monitors to estimate energy expenditure in manual wheelchair users.
    Hiremath SV; Ding D
    Annu Int Conf IEEE Eng Med Biol Soc; 2009; 2009():835-8. PubMed ID: 19964247
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Regression equations for RT3 activity monitors to estimate energy expenditure in manual wheelchair users.
    Hiremath SV; Ding D
    Annu Int Conf IEEE Eng Med Biol Soc; 2011; 2011():7348-51. PubMed ID: 22256036
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Evaluation of activity monitors in manual wheelchair users with paraplegia.
    Hiremath SV; Ding D
    J Spinal Cord Med; 2011; 34(1):110-7. PubMed ID: 21528634
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Evaluation of custom energy expenditure models for SenseWear armband in manual wheelchair users.
    Tsang K; Hiremath SV; Cooper RA; Ding D
    J Rehabil Res Dev; 2015; 52(7):793-803. PubMed ID: 26745837
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Physical activity classification utilizing SenseWear activity monitor in manual wheelchair users with spinal cord injury.
    Hiremath SV; Ding D; Farringdon J; Vyas N; Cooper RA
    Spinal Cord; 2013 Sep; 51(9):705-9. PubMed ID: 23689386
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Accelerometer output and its association with energy expenditure during manual wheelchair propulsion.
    Learmonth YC; Kinnett-Hopkins D; Rice IM; Dysterheft JL; Motl RW
    Spinal Cord; 2016 Feb; 54(2):110-4. PubMed ID: 25777327
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Accuracy of the Apple Watch Series 4 and Fitbit Versa for Assessing Energy Expenditure and Heart Rate of Wheelchair Users During Treadmill Wheelchair Propulsion: Cross-sectional Study.
    Danielsson ML; Vergeer M; Plasqui G; Baumgart JK
    JMIR Form Res; 2024 May; 8():e52312. PubMed ID: 38713497
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Predicting physical activity energy expenditure in manual wheelchair users.
    Nightingale TE; Walhim JP; Thompson D; Bilzon JL
    Med Sci Sports Exerc; 2014 Sep; 46(9):1849-58. PubMed ID: 25134004
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Comparison of four Fitbit and Jawbone activity monitors with a research-grade ActiGraph accelerometer for estimating physical activity and energy expenditure.
    Imboden MT; Nelson MB; Kaminsky LA; Montoye AH
    Br J Sports Med; 2018 Jul; 52(13):844-850. PubMed ID: 28483930
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Predicting energy expenditure of manual wheelchair users with spinal cord injury using a multisensor-based activity monitor.
    Hiremath SV; Ding D; Farringdon J; Cooper RA
    Arch Phys Med Rehabil; 2012 Nov; 93(11):1937-43. PubMed ID: 22609119
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Influence of accelerometer type and placement on physical activity energy expenditure prediction in manual wheelchair users.
    Nightingale TE; Walhin JP; Thompson D; Bilzon JL
    PLoS One; 2015; 10(5):e0126086. PubMed ID: 25955304
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A compendium of energy costs of physical activities for individuals who use manual wheelchairs.
    Conger SA; Bassett DR
    Adapt Phys Activ Q; 2011 Oct; 28(4):310-25. PubMed ID: 21914904
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The effects of experience on the energy cost of wheelchair propulsion.
    Croft L; Lenton J; Tolfrey K; Goosey-Tolfrey V
    Eur J Phys Rehabil Med; 2013 Dec; 49(6):865-73. PubMed ID: 23558701
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Comparison of activity monitors to estimate energy cost of treadmill exercise.
    King GA; Torres N; Potter C; Brooks TJ; Coleman KJ
    Med Sci Sports Exerc; 2004 Jul; 36(7):1244-51. PubMed ID: 15235333
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Validity of physical activity monitors for assessing lower intensity activity in adults.
    Calabró MA; Lee JM; Saint-Maurice PF; Yoo H; Welk GJ
    Int J Behav Nutr Phys Act; 2014 Sep; 11():119. PubMed ID: 25260625
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Validity of the Actical activity monitor for assessing steps and energy expenditure during walking.
    Johnson M; Meltz K; Hart K; Schmudlach M; Clarkson L; Borman K
    J Sports Sci; 2015; 33(8):769-76. PubMed ID: 25356920
    [TBL] [Abstract][Full Text] [Related]  

  • 20. How well do activity monitors estimate energy expenditure? A systematic review and meta-analysis of the validity of current technologies.
    O'Driscoll R; Turicchi J; Beaulieu K; Scott S; Matu J; Deighton K; Finlayson G; Stubbs J
    Br J Sports Med; 2020 Mar; 54(6):332-340. PubMed ID: 30194221
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.