BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

687 related articles for article (PubMed ID: 25635460)

  • 21. Input-specific control of reward and aversion in the ventral tegmental area.
    Lammel S; Lim BK; Ran C; Huang KW; Betley MJ; Tye KM; Deisseroth K; Malenka RC
    Nature; 2012 Nov; 491(7423):212-7. PubMed ID: 23064228
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Linking context with reward: a functional circuit from hippocampal CA3 to ventral tegmental area.
    Luo AH; Tahsili-Fahadan P; Wise RA; Lupica CR; Aston-Jones G
    Science; 2011 Jul; 333(6040):353-7. PubMed ID: 21764750
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Ventral tegmental area: cellular heterogeneity, connectivity and behaviour.
    Morales M; Margolis EB
    Nat Rev Neurosci; 2017 Feb; 18(2):73-85. PubMed ID: 28053327
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Lateral hypothalamic LEPR neurons drive appetitive but not consummatory behaviors.
    Siemian JN; Arenivar MA; Sarsfield S; Borja CB; Russell CN; Aponte Y
    Cell Rep; 2021 Aug; 36(8):109615. PubMed ID: 34433027
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Medial Nucleus Accumbens Projections to the Ventral Tegmental Area Control Food Consumption.
    Bond CW; Trinko R; Foscue E; Furman K; Groman SM; Taylor JR; DiLeone RJ
    J Neurosci; 2020 Jun; 40(24):4727-4738. PubMed ID: 32354856
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Medial forebrain bundle lesions fail to structurally and functionally disconnect the ventral tegmental area from many ipsilateral forebrain nuclei: implications for the neural substrate of brain stimulation reward.
    Simmons JM; Ackermann RF; Gallistel CR
    J Neurosci; 1998 Oct; 18(20):8515-33. PubMed ID: 9763494
    [TBL] [Abstract][Full Text] [Related]  

  • 27. VTA GABA Neurons at the Interface of Stress and Reward.
    Bouarab C; Thompson B; Polter AM
    Front Neural Circuits; 2019; 13():78. PubMed ID: 31866835
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Dopamine inhibits GABA(A) currents in ventral tegmental area dopamine neurons via activation of presynaptic G-protein coupled inwardly-rectifying potassium channels.
    Michaeli A; Yaka R
    Neuroscience; 2010 Feb; 165(4):1159-69. PubMed ID: 19944748
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Diversity in the lateral hypothalamic input to the ventral tegmental area.
    Godfrey N; Borgland SL
    Neuropharmacology; 2019 Aug; 154():4-12. PubMed ID: 31103620
    [TBL] [Abstract][Full Text] [Related]  

  • 30. VTA Glutamatergic Neurons Mediate Innate Defensive Behaviors.
    Barbano MF; Wang HL; Zhang S; Miranda-Barrientos J; Estrin DJ; Figueroa-González A; Liu B; Barker DJ; Morales M
    Neuron; 2020 Jul; 107(2):368-382.e8. PubMed ID: 32442399
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Ventral tegmental area GABAergic neurons induce anxiety-like behaviors and promote palatable food intake.
    Chen L; Lu YP; Chen HY; Huang SN; Guo YR; Zhang JY; Li QX; Luo CY; Lin SW; Chen ZN; Hu LH; Wang WX; Li HY; Cai P; Yu CX
    Neuropharmacology; 2020 Aug; 173():108114. PubMed ID: 32376186
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Ventral tegmental area neurons in learned appetitive behavior and positive reinforcement.
    Fields HL; Hjelmstad GO; Margolis EB; Nicola SM
    Annu Rev Neurosci; 2007; 30():289-316. PubMed ID: 17376009
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Paraventricular Thalamus Projection Neurons Integrate Cortical and Hypothalamic Signals for Cue-Reward Processing.
    Otis JM; Zhu M; Namboodiri VMK; Cook CA; Kosyk O; Matan AM; Ying R; Hashikawa Y; Hashikawa K; Trujillo-Pisanty I; Guo J; Ung RL; Rodriguez-Romaguera J; Anton ES; Stuber GD
    Neuron; 2019 Aug; 103(3):423-431.e4. PubMed ID: 31196673
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Negative Emotions Recruit the Parabrachial Nucleus Efferent to the VTA to Disengage Instrumental Food Seeking.
    Tsou JH; Lee SR; Chiang CY; Yang YJ; Guo FY; Ni SY; Yau HJ
    J Neurosci; 2023 Nov; 43(44):7276-7293. PubMed ID: 37684032
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Dopamine and reward seeking: the role of ventral tegmental area.
    Ranaldi R
    Rev Neurosci; 2014; 25(5):621-30. PubMed ID: 24887956
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Projection-Target-Defined Effects of Orexin and Dynorphin on VTA Dopamine Neurons.
    Baimel C; Lau BK; Qiao M; Borgland SL
    Cell Rep; 2017 Feb; 18(6):1346-1355. PubMed ID: 28178514
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Divergent circuitry underlying food reward and intake effects of ghrelin: dopaminergic VTA-accumbens projection mediates ghrelin's effect on food reward but not food intake.
    Skibicka KP; Shirazi RH; Rabasa-Papio C; Alvarez-Crespo M; Neuber C; Vogel H; Dickson SL
    Neuropharmacology; 2013 Oct; 73():274-83. PubMed ID: 23770258
    [TBL] [Abstract][Full Text] [Related]  

  • 38. A glutamatergic projection from the lateral hypothalamus targets VTA-projecting neurons in the lateral habenula of the rat.
    Poller WC; Madai VI; Bernard R; Laube G; Veh RW
    Brain Res; 2013 Apr; 1507():45-60. PubMed ID: 23348378
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Blockade of orexin-1 receptors in the ventral tegmental area could attenuate the lateral hypothalamic stimulation-induced potentiation of rewarding properties of morphine.
    Zarepour L; Fatahi Z; Sarihi A; Haghparast A
    Neuropeptides; 2014 Jun; 48(3):179-85. PubMed ID: 24793540
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Role of dopamine D2-like receptors within the ventral tegmental area and nucleus accumbens in antinociception induced by lateral hypothalamus stimulation.
    Moradi M; Yazdanian M; Haghparast A
    Behav Brain Res; 2015 Oct; 292():508-14. PubMed ID: 26166189
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 35.