These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

90 related articles for article (PubMed ID: 25635615)

  • 1. Hydroxyaptite nanorods patterned ZrO2 bilayer coating on zirconium for the application of percutaneous implants.
    Zhang L; Han Y; Tan G
    Colloids Surf B Biointerfaces; 2015 Mar; 127():8-14. PubMed ID: 25635615
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Formation and bioactivity of HA nanorods on micro-arc oxidized zirconium.
    Zhang L; Zhu S; Han Y; Xiao C; Tang W
    Mater Sci Eng C Mater Biol Appl; 2014 Oct; 43():86-91. PubMed ID: 25175191
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Formation mechanism, degradation behavior, and cytocompatibility of a nanorod-shaped HA and pore-sealed MgO bilayer coating on magnesium.
    Li B; Han Y; Qi K
    ACS Appl Mater Interfaces; 2014 Oct; 6(20):18258-74. PubMed ID: 25265530
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Comparison of plasma-sprayed hydroxyapatite coatings and zirconia-reinforced hydroxyapatite composite coatings: in vivo study.
    Lee TM; Yang CY; Chang E; Tsai RS
    J Biomed Mater Res A; 2004 Dec; 71(4):652-60. PubMed ID: 15505828
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Porous biomorphic silicon carbide ceramics coated with hydroxyapatite as prospective materials for bone implants.
    Gryshkov O; Klyui NI; Temchenko VP; Kyselov VS; Chatterjee A; Belyaev AE; Lauterboeck L; Iarmolenko D; Glasmacher B
    Mater Sci Eng C Mater Biol Appl; 2016 Nov; 68():143-152. PubMed ID: 27524006
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Tailoring the biological response of zirconium implants using zirconia bioceramic coatings: A systematic review.
    Molaei M; Attarzadeh N; Fattah-Alhosseini A
    J Trace Elem Med Biol; 2021 Jul; 66():126756. PubMed ID: 33831798
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Study of laser created ZRO2 and hydroxyapatite/ZrO2 films for implantology.
    Jelínek M; Dostálová T; Teuberová Z; Seydlová M; Masínová P; Kocourek T; Mróz W; Prokopiuk A; Smetana K
    Biomol Eng; 2007 Feb; 24(1):103-6. PubMed ID: 16839809
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Novel hydroxyapatite/graphene oxide/collagen bioactive composite coating on Ti16Nb alloys by electrodeposition.
    Yılmaz E; Çakıroğlu B; Gökçe A; Findik F; Gulsoy HO; Gulsoy N; Mutlu Ö; Özacar M
    Mater Sci Eng C Mater Biol Appl; 2019 Aug; 101():292-305. PubMed ID: 31029323
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Microstructural characteristics and biocompatibility of a Type-B carbonated hydroxyapatite coating deposited on NiTi shape memory alloy.
    Chu C; Hu T; Yin LH; Pu YP; Dong YS; Lin PH; Chung CY; Yeung KW; Chu PK
    Biomed Mater Eng; 2009; 19(6):401-8. PubMed ID: 20231792
    [TBL] [Abstract][Full Text] [Related]  

  • 10. ZnO nanorod-templated well-aligned ZrO2 nanotube arrays for fibroblast adhesion and proliferation.
    Lu Z; Zhu Z; Liu J; Hu W; Li CM
    Nanotechnology; 2014 May; 25(21):215102. PubMed ID: 24787036
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Cytocompatibility and antibacterial activity of nanostructured H
    Zhang L; Zhang J; Dai F; Han Y
    Sci Rep; 2017 Oct; 7(1):13951. PubMed ID: 29066726
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Randomly oriented, upright SiO2 coated nanorods for reduced adhesion of mammalian cells.
    Lee J; Chu BH; Chen KH; Ren F; Lele TP
    Biomaterials; 2009 Sep; 30(27):4488-93. PubMed ID: 19515416
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Bond strength, compositional, and structural properties of hydroxyapatite coating on Ti, ZrO2-coated Ti, and TPS-coated Ti substrate.
    Yang Y; Ong JL
    J Biomed Mater Res A; 2003 Mar; 64(3):509-16. PubMed ID: 12579565
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Processing and evaluation of bioactive coatings on polymeric implants.
    Rabiei A; Sandukas S
    J Biomed Mater Res A; 2013 Sep; 101(9):2621-9. PubMed ID: 23412996
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The development of fibronectin-functionalised hydroxyapatite coatings to improve dermal fibroblast attachment in vitro.
    Pendegrass CJ; El-Husseiny M; Blunn GW
    J Bone Joint Surg Br; 2012 Apr; 94(4):564-9. PubMed ID: 22434476
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Regulation of osteoblast proliferation and differentiation by interrod spacing of Sr-HA nanorods on microporous titania coatings.
    Zhou J; Li B; Lu S; Zhang L; Han Y
    ACS Appl Mater Interfaces; 2013 Jun; 5(11):5358-65. PubMed ID: 23668394
    [TBL] [Abstract][Full Text] [Related]  

  • 17. In vitro and in vivo bioactivity of CoBlast hydroxyapatite coating and the effect of impaction on its osteoconductivity.
    Tan F; Naciri M; Dowling D; Al-Rubeai M
    Biotechnol Adv; 2012; 30(1):352-62. PubMed ID: 21801828
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Si substituted hydroxyapatite nanorods on Ti for percutaneous implants.
    Li K; Xue Y; Yan T; Zhang L; Han Y
    Bioact Mater; 2020 Mar; 5(1):116-123. PubMed ID: 32021946
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Direct role of interrod spacing in mediating cell adhesion on Sr-HA nanorod-patterned coatings.
    Zhou J; Han Y; Lu S
    Int J Nanomedicine; 2014; 9():1243-60. PubMed ID: 24634585
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Study on the genotoxicity of HA/ZrO2 composite particles in vitro.
    Quan R; Tang Y; Huang Z; Xu J; Wu X; Yang D
    Mater Sci Eng C Mater Biol Appl; 2013 Apr; 33(3):1332-8. PubMed ID: 23827579
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.