These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

101 related articles for article (PubMed ID: 25635627)

  • 1. The hole in the barrel: water exchange at the GFP chromophore.
    Shinobu A; Agmon N
    J Phys Chem B; 2015 Feb; 119(8):3464-78. PubMed ID: 25635627
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Proton Wire Dynamics in the Green Fluorescent Protein.
    Shinobu A; Agmon N
    J Chem Theory Comput; 2017 Jan; 13(1):353-369. PubMed ID: 28068768
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Kinetics of switchable proton escape from a proton-wire within green fluorescence protein.
    Agmon N
    J Phys Chem B; 2007 Jul; 111(27):7870-8. PubMed ID: 17569555
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Molecular modeling of green fluorescent protein: structural effects of chromophore deprotonation.
    Patnaik SS; Trohalaki S; Pachter R
    Biopolymers; 2004 Dec; 75(6):441-52. PubMed ID: 15497152
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Visualizing proton antenna in a high-resolution green fluorescent protein structure.
    Shinobu A; Palm GJ; Schierbeek AJ; Agmon N
    J Am Chem Soc; 2010 Aug; 132(32):11093-102. PubMed ID: 20698675
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Inspecting fluctuation and coordination around chromophore inside green fluorescent protein from water to nonpolar solvent.
    Dai L; Zhang B; Cui S; Yu J
    Proteins; 2019 Jul; 87(7):531-540. PubMed ID: 30788862
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Mapping proton wires in proteins: carbonic anhydrase and GFP chromophore biosynthesis.
    Shinobu A; Agmon N
    J Phys Chem A; 2009 Jul; 113(26):7253-66. PubMed ID: 19388648
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Structure and dynamics of a proton wire: a theoretical study of H+ translocation along the single-file water chain in the gramicidin A channel.
    Pomès R; Roux B
    Biophys J; 1996 Jul; 71(1):19-39. PubMed ID: 8804586
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Molecular mechanism of H+ conduction in the single-file water chain of the gramicidin channel.
    Pomès R; Roux B
    Biophys J; 2002 May; 82(5):2304-16. PubMed ID: 11964221
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Water molecules in DNA recognition II: a molecular dynamics view of the structure and hydration of the trp operator.
    Bonvin AM; Sunnerhagen M; Otting G; van Gunsteren WF
    J Mol Biol; 1998 Oct; 282(4):859-73. PubMed ID: 9743632
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Structure and excited-state proton transfer in the GFP S205A mutant.
    Erez Y; Gepshtein R; Presiado I; Trujillo K; Kallio K; Remington SJ; Huppert D
    J Phys Chem B; 2011 Oct; 115(41):11776-85. PubMed ID: 21902228
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Time-averaged distributions of solute and solvent motions: exploring proton wires of GFP and PfM2DH.
    Velez-Vega C; McKay DJ; Aravamuthan V; Pearlstein R; Duca JS
    J Chem Inf Model; 2014 Dec; 54(12):3344-61. PubMed ID: 25405925
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The mechanism of proton transfer between adjacent sites exposed to water.
    Mezer A; Friedman R; Noivirt O; Nachliel E; Gutman M
    J Phys Chem B; 2005 Jun; 109(22):11379-88. PubMed ID: 16852391
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Experimental identification and theoretical analysis of a thermally stabilized green fluorescent protein variant.
    Akiyama S; Suenaga A; Kobayashi T; Kamioka T; Taiji M; Kuroda Y
    Biochemistry; 2012 Oct; 51(40):7974-82. PubMed ID: 22963334
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Proton transfer in wild-type GFP and S205V mutant is reduced by conformational changes of residues in the proton wire.
    Simkovitch R; Huppert A; Huppert D; Remington SJ; Miller Y
    J Phys Chem B; 2013 Oct; 117(40):11921-31. PubMed ID: 24087884
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Unveiling how an archetypal fluorescent protein operates: theoretical perspective on the ultrafast excited state dynamics of GFP variant S65T/H148D.
    Armengol P; Gelabert R; Moreno M; Lluch JM
    J Phys Chem B; 2015 Feb; 119(6):2274-91. PubMed ID: 25144880
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Ultrafast proton shuttling in Psammocora cyan fluorescent protein.
    Kennis JT; van Stokkum IH; Peterson DS; Pandit A; Wachter RM
    J Phys Chem B; 2013 Sep; 117(38):11134-43. PubMed ID: 23534404
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Transition in the temperature-dependence of GFP fluorescence: from proton wires to proton exit.
    Leiderman P; Huppert D; Agmon N
    Biophys J; 2006 Feb; 90(3):1009-18. PubMed ID: 16284263
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Origin of the nonexponential dynamics of excited-state proton transfer in wt-green fluorescent protein.
    Gepshtein R; Leiderman P; Huppert D
    J Phys Chem B; 2008 Jun; 112(24):7203-10. PubMed ID: 18491929
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Cyan fluorescent protein: molecular dynamics, simulations, and electronic absorption spectrum.
    Demachy I; Ridard J; Laguitton-Pasquier H; Durnerin E; Vallverdu G; Archirel P; Lévy B
    J Phys Chem B; 2005 Dec; 109(50):24121-33. PubMed ID: 16375404
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.