These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
125 related articles for article (PubMed ID: 2563567)
1. N-terminal basic amino acids are not required for translocation and processing of preproparathyroid hormone. Szczesna-Skorupa E; Kemper B Mol Endocrinol; 1989 Jan; 3(1):174-8. PubMed ID: 2563567 [TBL] [Abstract][Full Text] [Related]
2. Inverse relationship of cotranslational translocation with the hydrophobic moment of the bovine preproparathyroid hormone signal sequence. Ahn K; Chen D; Kemper B Biochim Biophys Acta; 1994 Dec; 1224(3):459-62. PubMed ID: 7803504 [TBL] [Abstract][Full Text] [Related]
3. Parallel effects of signal peptide hydrophobic core modifications on co-translational translocation and post-translational cleavage by purified signal peptidase. Cioffi JA; Allen KL; Lively MO; Kemper B J Biol Chem; 1989 Sep; 264(25):15052-8. PubMed ID: 2549048 [TBL] [Abstract][Full Text] [Related]
4. Mutations in the NH2-terminal domain of the signal peptide of preproparathyroid hormone inhibit translocation without affecting interaction with signal recognition particle. Szczesna-Skorupa E; Mead DA; Kemper B J Biol Chem; 1987 Jun; 262(18):8896-900. PubMed ID: 3036835 [TBL] [Abstract][Full Text] [Related]
5. Consequences of amino-terminal deletions of preproparathyroid hormone signal sequence. Freeman MW; Wiren KM; Rapoport A; Lazar M; Potts JT; Kronenberg HM Mol Endocrinol; 1987 Sep; 1(9):628-38. PubMed ID: 3153480 [TBL] [Abstract][Full Text] [Related]
6. Positive charges at the NH2 terminus convert the membrane-anchor signal peptide of cytochrome P-450 to a secretory signal peptide. Szczesna-Skorupa E; Browne N; Mead D; Kemper B Proc Natl Acad Sci U S A; 1988 Feb; 85(3):738-42. PubMed ID: 3422456 [TBL] [Abstract][Full Text] [Related]
7. Inefficient membrane targeting, translocation, and proteolytic processing by signal peptidase of a mutant preproparathyroid hormone protein. Karaplis AC; Lim SK; Baba H; Arnold A; Kronenberg HM J Biol Chem; 1995 Jan; 270(4):1629-35. PubMed ID: 7829495 [TBL] [Abstract][Full Text] [Related]
8. Interaction of nascent preproparathyroid hormone molecules with microsomal membranes. Baba H; Karaplis AC; Wiren KM; Keutmann HT; Kronenberg HM J Bone Miner Res; 1992 Feb; 7(2):199-206. PubMed ID: 1570764 [TBL] [Abstract][Full Text] [Related]
9. NH2-terminal substitutions of basic amino acids induce translocation across the microsomal membrane and glycosylation of rabbit cytochrome P450IIC2. Szczesna-Skorupa E; Kemper B J Cell Biol; 1989 Apr; 108(4):1237-43. PubMed ID: 2494191 [TBL] [Abstract][Full Text] [Related]
10. Signal sequence of human preproparathyroid hormone is inactive in yeast. Born W; Freeman M; Bornstein W; Rapoport A; Klein RD; Hendy GN; Khorana HG; Rich A; Potts JT; Kronenberg HM J Bone Miner Res; 1987 Aug; 2(4):353-60. PubMed ID: 3455619 [TBL] [Abstract][Full Text] [Related]
11. Mutations in signal sequence cleavage domain of preproparathyroid hormone alter protein translocation, signal sequence cleavage, and membrane-binding properties. Wiren KM; Ivashkiv L; Ma P; Freeman MW; Potts JT; Kronenberg HM Mol Endocrinol; 1989 Feb; 3(2):240-50. PubMed ID: 2710131 [TBL] [Abstract][Full Text] [Related]
12. Importance of the propeptide sequence of human preproparathyroid hormone for signal sequence function. Wiren KM; Potts JT; Kronenberg HM J Biol Chem; 1988 Dec; 263(36):19771-7. PubMed ID: 3198649 [TBL] [Abstract][Full Text] [Related]
13. Uncoupling of co-translational translocation from signal peptidase processing in a mutant rat preapolipoprotein-A-IV with a deletion that includes the COOH-terminal region of its signal peptide. Nothwehr SF; Folz RJ; Gordon JI J Biol Chem; 1989 Mar; 264(8):4642-7. PubMed ID: 2647742 [TBL] [Abstract][Full Text] [Related]
14. Residues flanking the COOH-terminal C-region of a model eukaryotic signal peptide influence the site of its cleavage by signal peptidase and the extent of coupling of its co-translational translocation and proteolytic processing in vitro. Nothwehr SF; Hoeltzli SD; Allen KL; Lively MO; Gordon JI J Biol Chem; 1990 Dec; 265(35):21797-803. PubMed ID: 2123875 [TBL] [Abstract][Full Text] [Related]
16. Mutation of the signal peptide-encoding region of the preproparathyroid hormone gene in familial isolated hypoparathyroidism. Arnold A; Horst SA; Gardella TJ; Baba H; Levine MA; Kronenberg HM J Clin Invest; 1990 Oct; 86(4):1084-7. PubMed ID: 2212001 [TBL] [Abstract][Full Text] [Related]
17. On the biosynthesis of bovine pancreatic trypsin inhibitor (BPTI). Structure, processing, folding and disulphide bond formation of the precursor in vitro and in microsomes. Creighton TE; Bagley CJ; Cooper L; Darby NJ; Freedman RB; Kemmink J; Sheikh A J Mol Biol; 1993 Aug; 232(4):1176-96. PubMed ID: 7690407 [TBL] [Abstract][Full Text] [Related]
18. Correlation of secondary structure with biological activity for a leader peptide: circular dichroism-derived structure and in vitro biological activities of preproparathyroid hormone peptide and its analogs. Caulfield MP; Park K; Rosenblatt M; Fasman GD Arch Biochem Biophys; 1991 Sep; 289(2):208-13. PubMed ID: 1898067 [TBL] [Abstract][Full Text] [Related]
19. The presequence of Euglena LHCPII, a cytoplasmically synthesized chloroplast protein, contains a functional endoplasmic reticulum-targeting domain. Kishore R; Muchhal US; Schwartzbach SD Proc Natl Acad Sci U S A; 1993 Dec; 90(24):11845-9. PubMed ID: 8265635 [TBL] [Abstract][Full Text] [Related]
20. Impaired cotranslational processing of the calcium-sensing receptor due to signal peptide missense mutations in familial hypocalciuric hypercalcemia. Pidasheva S; Canaff L; Simonds WF; Marx SJ; Hendy GN Hum Mol Genet; 2005 Jun; 14(12):1679-90. PubMed ID: 15879434 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]