These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

178 related articles for article (PubMed ID: 25635675)

  • 21. Seasonal microbial variation accounts for arsenic dynamics in shallow alluvial aquifer systems.
    Zheng T; Deng Y; Wang Y; Jiang H; O'Loughlin EJ; Flynn TM; Gan Y; Ma T
    J Hazard Mater; 2019 Apr; 367():109-119. PubMed ID: 30594709
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Iron isotope evidence for arsenic mobilization in shallow multi-level alluvial aquifers of Jianghan Plain, central China.
    Yang Y; Deng Y; Xie X; Gan Y; Li J
    Ecotoxicol Environ Saf; 2020 Dec; 206():111120. PubMed ID: 32861962
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Arsenic release from shallow aquifers of the Hetao basin, Inner Mongolia: evidence from bacterial community in aquifer sediments and groundwater.
    Li Y; Guo H; Hao C
    Ecotoxicology; 2014 Dec; 23(10):1900-14. PubMed ID: 25139033
    [TBL] [Abstract][Full Text] [Related]  

  • 24. The Potential for CH
    Matsushita M; Ishikawa S; Magara K; Sato Y; Kimura H
    Microbes Environ; 2020; 35(1):. PubMed ID: 31932538
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Geochemical and Microbiological Evidence for Microbial Methane Production in Deep Aquifers of the Cretaceous Accretionary Prism.
    Matsushita M; Magara K; Sato Y; Shinzato N; Kimura H
    Microbes Environ; 2018 Jul; 33(2):205-213. PubMed ID: 29899169
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Effect of microbially mediated iron mineral transformation on temporal variation of arsenic in the Pleistocene aquifers of the central Yangtze River basin.
    Deng Y; Zheng T; Wang Y; Liu L; Jiang H; Ma T
    Sci Total Environ; 2018 Apr; 619-620():1247-1258. PubMed ID: 29734603
    [TBL] [Abstract][Full Text] [Related]  

  • 27. CO2/Brine transport into shallow aquifers along fault zones.
    Keating EH; Newell DL; Viswanathan H; Carey JW; Zyvoloski G; Pawar R
    Environ Sci Technol; 2013 Jan; 47(1):290-7. PubMed ID: 22799449
    [TBL] [Abstract][Full Text] [Related]  

  • 28. From Recharge, to Groundwater, to Discharge Areas in Aquifer Systems in Quebec (Canada): Shaping of Microbial Diversity and Community Structure by Environmental Factors.
    Villeneuve K; Violette M; Lazar CS
    Genes (Basel); 2022 Dec; 14(1):. PubMed ID: 36672742
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Geological gas-storage shapes deep life.
    Ranchou-Peyruse M; Auguet JC; Mazière C; Restrepo-Ortiz CX; Guignard M; Dequidt D; Chiquet P; Cézac P; Ranchou-Peyruse A
    Environ Microbiol; 2019 Oct; 21(10):3953-3964. PubMed ID: 31314939
    [TBL] [Abstract][Full Text] [Related]  

  • 30. A metagenomic window into the 2-km-deep terrestrial subsurface aquifer revealed multiple pathways of organic matter decomposition.
    Kadnikov VV; Mardanov AV; Beletsky AV; Banks D; Pimenov NV; Frank YA; Karnachuk OV; Ravin NV
    FEMS Microbiol Ecol; 2018 Oct; 94(10):. PubMed ID: 30101334
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Geochemistry of redox-sensitive elements and sulfur isotopes in the high arsenic groundwater system of Datong Basin, China.
    Xie X; Ellis A; Wang Y; Xie Z; Duan M; Su C
    Sci Total Environ; 2009 Jun; 407(12):3823-35. PubMed ID: 19344934
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Distinct bacterial communities in tropical island aquifers.
    Kirs M; Kisand V; Nelson CE; Dudoit T; Moravcik PS
    PLoS One; 2020; 15(4):e0232265. PubMed ID: 32353009
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Changes in the deep subsurface microbial biosphere resulting from a field-scale CO2 geosequestration experiment.
    Mu A; Boreham C; Leong HX; Haese RR; Moreau JW
    Front Microbiol; 2014; 5():209. PubMed ID: 24860559
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Geochemical detection of carbon dioxide in dilute aquifers.
    Carroll S; Hao Y; Aines R
    Geochem Trans; 2009 Mar; 10():4. PubMed ID: 19323832
    [TBL] [Abstract][Full Text] [Related]  

  • 35.
    Lacroix E; de Donato P; Lafortune S; Caumon MC; Barres O; Liu X; Derrien M; Piedevache M
    Anal Methods; 2021 Sep; 13(34):3806-3820. PubMed ID: 34369492
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Microbial diversity and impact on carbonate geochemistry across a changing geochemical gradient in a karst aquifer.
    Gray CJ; Engel AS
    ISME J; 2013 Feb; 7(2):325-37. PubMed ID: 23151637
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Spatial variation in microbial community structure, richness, and diversity in an alluvial aquifer.
    Medihala PG; Lawrence JR; Swerhone GD; Korber DR
    Can J Microbiol; 2012 Sep; 58(9):1135-51. PubMed ID: 22913282
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Identification of the microbes mediating Fe reduction in a deep saline aquifer and their influence during managed aquifer recharge.
    Ko MS; Cho K; Jeong D; Lee S
    Sci Total Environ; 2016 Mar; 545-546():486-92. PubMed ID: 26760269
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Underground sources of drinking water chemistry changes in response to potential CO
    Xiao T; Wang B; Xu L; Esser R; Dai Z; Cather M; McPherson B
    Sci Total Environ; 2022 Nov; 847():157254. PubMed ID: 35817102
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Paired RNA Radiocarbon and Sequencing Analyses Indicate the Importance of Autotrophy in a Shallow Alluvial Aquifer.
    Mailloux BJ; Kim C; Kichuk T; Nguyen K; Precht C; Wang S; Jewell TNM; Karaoz U; Brodie EL; Williams KH; Beller HR; Buchholz BA
    Sci Rep; 2019 Jul; 9(1):10370. PubMed ID: 31316095
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.