These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
113 related articles for article (PubMed ID: 25635837)
1. Metal-enhanced luminescence in colloidal solutions of CdSe and metal nanoparticles: investigation of density dependence and optical band overlap. Rohner C; Tavernaro I; Chen L; Klar PJ; Schlecht S Phys Chem Chem Phys; 2015 Feb; 17(8):5932-41. PubMed ID: 25635837 [TBL] [Abstract][Full Text] [Related]
2. Wavelength, concentration, and distance dependence of nonradiative energy transfer to a plane of gold nanoparticles. Zhang X; Marocico CA; Lunz M; Gerard VA; Gun'ko YK; Lesnyak V; Gaponik N; Susha AS; Rogach AL; Bradley AL ACS Nano; 2012 Oct; 6(10):9283-90. PubMed ID: 22973978 [TBL] [Abstract][Full Text] [Related]
3. Suppression of quenching in plasmon-enhanced luminescence via rapid intraparticle energy transfer in doped quantum dots. Park Y; Pravitasari A; Raymond JE; Batteas JD; Son DH ACS Nano; 2013 Dec; 7(12):10544-51. PubMed ID: 24215453 [TBL] [Abstract][Full Text] [Related]
4. Using Patterned Arrays of Metal Nanoparticles to Probe Plasmon Enhanced Luminescence of CdSe Quantum Dots. Chan YH; Chen J; Wark SE; Skiles SL; Son DH; Batteas JD ACS Nano; 2009 Jul; 3(7):1735-44. PubMed ID: 19499906 [TBL] [Abstract][Full Text] [Related]
5. Density matrix based microscopic theory of molecule metal-nanoparticle interactions: linear absorbance and plasmon enhancement of intermolecular excitation energy transfer. Kyas G; May V J Chem Phys; 2011 Jan; 134(3):034701. PubMed ID: 21261378 [TBL] [Abstract][Full Text] [Related]
6. Plasmon-Enhanced Energy Transfer in Photosensitive Nanocrystal Device. Akhavan S; Akgul MZ; Hernandez-Martinez PL; Demir HV ACS Nano; 2017 Jun; 11(6):5430-5439. PubMed ID: 28528543 [TBL] [Abstract][Full Text] [Related]
7. Plasmon-enhanced Förster energy transfer between semiconductor quantum dots: multipole effects. Su XR; Zhang W; Zhou L; Peng XN; Wang QQ Opt Express; 2010 Mar; 18(7):6516-21. PubMed ID: 20389674 [TBL] [Abstract][Full Text] [Related]
8. Impact of a charged neighboring particle on Förster resonance energy transfer (FRET). Abeywickrama C; Premaratne M; Gunapala SD; Andrews DL J Phys Condens Matter; 2020 Feb; 32(9):095305. PubMed ID: 31722329 [TBL] [Abstract][Full Text] [Related]
9. Distance and orientation dependence of excitation energy transfer: from molecular systems to metal nanoparticles. Saini S; Srinivas G; Bagchi B J Phys Chem B; 2009 Feb; 113(7):1817-32. PubMed ID: 19128043 [TBL] [Abstract][Full Text] [Related]
10. Theory of plasmon enhanced interfacial electron transfer. Wang L; May V J Phys Condens Matter; 2015 Apr; 27(13):134209. PubMed ID: 25764984 [TBL] [Abstract][Full Text] [Related]
11. Can we control the electronic energy transfer in molecular dyads through metal nanoparticles? A QM/continuum investigation. Angioni A; Corni S; Mennucci B Phys Chem Chem Phys; 2013 Mar; 15(9):3294-303. PubMed ID: 23361439 [TBL] [Abstract][Full Text] [Related]
12. Nanoparticle energy transfer on the cell surface. Bene L; Szentesi G; Mátyus L; Gáspár R; Damjanovich S J Mol Recognit; 2005; 18(3):236-53. PubMed ID: 15593286 [TBL] [Abstract][Full Text] [Related]
13. Enhanced photoluminescence of silicon quantum dots in the presence of both energy transfer enhancement and emission enhancement mechanisms assisted by the double plasmon modes of gold nanorods. Cao J; Zhang H; Pi X; Li D; Yang D Nanoscale Adv; 2021 Aug; 3(16):4810-4815. PubMed ID: 36134309 [TBL] [Abstract][Full Text] [Related]
14. Multimodal coupling of optical transitions and plasmonic oscillations in rhodamine B modified gold nanoparticles. Stobiecka M; Hepel M Phys Chem Chem Phys; 2011 Jan; 13(3):1131-9. PubMed ID: 21072434 [TBL] [Abstract][Full Text] [Related]
15. Surface plasmon enhanced energy transfer in metal-semiconductor hybrid nanostructures. Zhao X; Wang P; Li B Nanoscale; 2011 Aug; 3(8):3056-9. PubMed ID: 21701747 [TBL] [Abstract][Full Text] [Related]
16. Absorption enhancement in solution processed metal-semiconductor nanocomposites. García de Arquer FP; Beck FJ; Konstantatos G Opt Express; 2011 Oct; 19(21):21038-49. PubMed ID: 21997112 [TBL] [Abstract][Full Text] [Related]
17. Ultrafast exciton dynamics and light-driven H2 evolution in colloidal semiconductor nanorods and Pt-tipped nanorods. Wu K; Zhu H; Lian T Acc Chem Res; 2015 Mar; 48(3):851-9. PubMed ID: 25682713 [TBL] [Abstract][Full Text] [Related]
18. Spectroscopic studies of 1,4-dimethoxy-2,3-dimethylanthracene-9,10-dione on plasmonic silver nanoparticles. Kavitha SR; Umadevi M; Vanelle P; Terme T; Khoumeri O; Sridhar B Spectrochim Acta A Mol Biomol Spectrosc; 2014 Dec; 133():472-9. PubMed ID: 24973788 [TBL] [Abstract][Full Text] [Related]
19. The quenching effect of silver nanoparticles on 2-amino-3-bromo-1, 4-naphthoquinone using fluorescence spectroscopy. Manikandan P; Pushpam S; Sasirekha V; Rani JS; Ramakrishnan V Spectrochim Acta A Mol Biomol Spectrosc; 2014; 121():276-81. PubMed ID: 24252292 [TBL] [Abstract][Full Text] [Related]