These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
113 related articles for article (PubMed ID: 25635837)
21. Direct and stepwise energy transfer from excitons to plasmons in close-packed metal and semiconductor nanoparticle monolayer films. Hosoki K; Tayagaki T; Yamamoto S; Matsuda K; Kanemitsu Y Phys Rev Lett; 2008 May; 100(20):207404. PubMed ID: 18518579 [TBL] [Abstract][Full Text] [Related]
22. Distance and plasmon wavelength dependent fluorescence of molecules bound to silica-coated gold nanorods. Abadeer NS; Brennan MR; Wilson WL; Murphy CJ ACS Nano; 2014 Aug; 8(8):8392-406. PubMed ID: 25062430 [TBL] [Abstract][Full Text] [Related]
23. Förster-type resonant energy transfer influenced by metal nanoparticles. Reil F; Hohenester U; Krenn JR; Leitner A Nano Lett; 2008 Dec; 8(12):4128-33. PubMed ID: 19367798 [TBL] [Abstract][Full Text] [Related]
24. Optical response of a quantum dot-metal nanoparticle hybrid interacting with a weak probe field. Kosionis SG; Terzis AF; Sadeghi SM; Paspalakis E J Phys Condens Matter; 2013 Jan; 25(4):045304. PubMed ID: 23257986 [TBL] [Abstract][Full Text] [Related]
25. A revisitation of the Förster energy transfer near a metallic spherical nanoparticle: (1) Efficiency enhancement or reduction? (2) The control of the Förster radius of the unbounded medium. (3) The impact of the local density of states. Gonzaga-Galeana JA; Zurita-Sánchez JR J Chem Phys; 2013 Dec; 139(24):244302. PubMed ID: 24387365 [TBL] [Abstract][Full Text] [Related]
26. Experimental and theoretical investigation of the distance dependence of localized surface plasmon coupled Förster resonance energy transfer. Zhang X; Marocico CA; Lunz M; Gerard VA; Gun'ko YK; Lesnyak V; Gaponik N; Susha AS; Rogach AL; Bradley AL ACS Nano; 2014 Feb; 8(2):1273-83. PubMed ID: 24490807 [TBL] [Abstract][Full Text] [Related]
27. Metal enhanced fluorescence in rare earth doped plasmonic core-shell nanoparticles. Derom S; Berthelot A; Pillonnet A; Benamara O; Jurdyc AM; Girard C; Colas des Francs G Nanotechnology; 2013 Dec; 24(49):495704. PubMed ID: 24231223 [TBL] [Abstract][Full Text] [Related]
28. Theory of molecule metal nano-particle interaction: Quantum description of plasmonic lasing. Zhang Y; May V J Chem Phys; 2015 Jun; 142(22):224702. PubMed ID: 26071722 [TBL] [Abstract][Full Text] [Related]
29. Magnetic nanoparticles with high specific absorption rate of electromagnetic energy at low field strength for hyperthermia therapy. Shubitidze F; Kekalo K; Stigliano R; Baker I J Appl Phys; 2015 Mar; 117(9):094302. PubMed ID: 25825545 [TBL] [Abstract][Full Text] [Related]
30. Distance-dependent interactions between gold nanoparticles and fluorescent molecules with DNA as tunable spacers. Chhabra R; Sharma J; Wang H; Zou S; Lin S; Yan H; Lindsay S; Liu Y Nanotechnology; 2009 Dec; 20(48):485201. PubMed ID: 19880983 [TBL] [Abstract][Full Text] [Related]
31. [Spectral characteristics of CdSe/CdS nanocrystals]. Liu SM; Xu Z; Wageh H; Xu XR Guang Pu Xue Yu Guang Pu Fen Xi; 2002 Dec; 22(6):908-11. PubMed ID: 12914161 [TBL] [Abstract][Full Text] [Related]
32. Influence of Ag nanoparticles on the luminescence dynamics of Dy3+ ions in glass: the "plasmonic diluent" effect. Jiménez JA Phys Chem Chem Phys; 2013 Oct; 15(40):17587-94. PubMed ID: 24036991 [TBL] [Abstract][Full Text] [Related]
33. Stern-Volmer modeling of steady-state Forster energy transfer between dilute, freely diffusing membrane-bound fluorophores. Buboltz JT; Bwalya C; Reyes S; Kamburov D J Chem Phys; 2007 Dec; 127(21):215101. PubMed ID: 18067378 [TBL] [Abstract][Full Text] [Related]
34. A hybrid atomistic electrodynamics-quantum mechanical approach for simulating surface-enhanced Raman scattering. Payton JL; Morton SM; Moore JE; Jensen L Acc Chem Res; 2014 Jan; 47(1):88-99. PubMed ID: 23965411 [TBL] [Abstract][Full Text] [Related]
35. Four-wave mixing signal enhancement and optical bistability of a hybrid metal nanoparticle-quantum dot molecule in a nanomechanical resonator. Li JB; Liang S; Xiao S; He MD; Kim NC; Chen LQ; Wu GH; Peng YX; Luo XY; Guo ZP Opt Express; 2016 Feb; 24(3):2360-9. PubMed ID: 26906811 [TBL] [Abstract][Full Text] [Related]
36. Surface chemistry: a non-negligible parameter in determining optical properties of small colloidal metal nanoparticles. Sun Y; Gray SK; Peng S Phys Chem Chem Phys; 2011 Jul; 13(25):11814-26. PubMed ID: 21611673 [TBL] [Abstract][Full Text] [Related]
38. On the use of plasmonic nanoparticle pairs as a plasmon ruler: the dependence of the near-field dipole plasmon coupling on nanoparticle size and shape. Tabor C; Murali R; Mahmoud M; El-Sayed MA J Phys Chem A; 2009 Mar; 113(10):1946-53. PubMed ID: 19090688 [TBL] [Abstract][Full Text] [Related]
39. Distance and wavelength dependent quenching of molecular fluorescence by Au@SiO2 core-shell nanoparticles. Reineck P; Gómez D; Ng SH; Karg M; Bell T; Mulvaney P; Bach U ACS Nano; 2013 Aug; 7(8):6636-48. PubMed ID: 23713513 [TBL] [Abstract][Full Text] [Related]
40. Construction, gene delivery, and expression of DNA tethered nanoparticles. Prow T; Smith JN; Grebe R; Salazar JH; Wang N; Kotov N; Lutty G; Leary J Mol Vis; 2006 May; 12():606-15. PubMed ID: 16760897 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]