These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

111 related articles for article (PubMed ID: 25636037)

  • 1. Digging deeper: high-resolution genome-scale data yields new insights into root biology.
    Karve R; Iyer-Pascuzzi AS
    Curr Opin Plant Biol; 2015 Apr; 24():24-30. PubMed ID: 25636037
    [TBL] [Abstract][Full Text] [Related]  

  • 2. MADS-box transcription factor OsMADS25 regulates root development through affection of nitrate accumulation in rice.
    Yu C; Liu Y; Zhang A; Su S; Yan A; Huang L; Ali I; Liu Y; Forde BG; Gan Y
    PLoS One; 2015; 10(8):e0135196. PubMed ID: 26258667
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A soybean β-expansin gene GmEXPB2 intrinsically involved in root system architecture responses to abiotic stresses.
    Guo W; Zhao J; Li X; Qin L; Yan X; Liao H
    Plant J; 2011 May; 66(3):541-52. PubMed ID: 21261763
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Soybean NAC transcription factors promote abiotic stress tolerance and lateral root formation in transgenic plants.
    Hao YJ; Wei W; Song QX; Chen HW; Zhang YQ; Wang F; Zou HF; Lei G; Tian AG; Zhang WK; Ma B; Zhang JS; Chen SY
    Plant J; 2011 Oct; 68(2):302-13. PubMed ID: 21707801
    [TBL] [Abstract][Full Text] [Related]  

  • 5. OsCBL1 modulates lateral root elongation in rice via affecting endogenous indole-3-acetic acid biosynthesis.
    Yang J; Zhang X; Huang Y; Feng Y; Li Y
    J Genet Genomics; 2015 Jun; 42(6):331-4. PubMed ID: 26165499
    [No Abstract]   [Full Text] [Related]  

  • 6. CEP genes regulate root and shoot development in response to environmental cues and are specific to seed plants.
    Delay C; Imin N; Djordjevic MA
    J Exp Bot; 2013 Dec; 64(17):5383-94. PubMed ID: 24179096
    [TBL] [Abstract][Full Text] [Related]  

  • 7. SHR overexpression induces the formation of supernumerary cell layers with cortex cell identity in rice.
    Henry S; Dievart A; Divol F; Pauluzzi G; Meynard D; Swarup R; Wu S; Gallagher KL; Périn C
    Dev Biol; 2017 May; 425(1):1-7. PubMed ID: 28263767
    [TBL] [Abstract][Full Text] [Related]  

  • 8. OsCAND1 is required for crown root emergence in rice.
    Wang XF; He FF; Ma XX; Mao CZ; Hodgman C; Lu CG; Wu P
    Mol Plant; 2011 Mar; 4(2):289-99. PubMed ID: 20978084
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Nutrient levels control root growth responses to high ambient temperature in plants.
    Lee S; Showalter J; Zhang L; Cassin-Ross G; Rouached H; Busch W
    Nat Commun; 2024 Jun; 15(1):4689. PubMed ID: 38824148
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Root hair-specific expansins modulate root hair elongation in rice.
    ZhiMing Y; Bo K; XiaoWei H; ShaoLei L; YouHuang B; WoNa D; Ming C; Hyung-Taeg C; Ping W
    Plant J; 2011 Jun; 66(5):725-34. PubMed ID: 21309868
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A CLE-WOX signalling module regulates root meristem maintenance and vascular tissue development in rice.
    Chu H; Liang W; Li J; Hong F; Wu Y; Wang L; Wang J; Wu P; Liu C; Zhang Q; Xu J; Zhang D
    J Exp Bot; 2013 Dec; 64(17):5359-69. PubMed ID: 24043854
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Identification of legume RopGEF gene families and characterization of a Medicago truncatula RopGEF mediating polar growth of root hairs.
    Riely BK; He H; Venkateshwaran M; Sarma B; Schraiber J; Ané JM; Cook DR
    Plant J; 2011 Jan; 65(2):230-43. PubMed ID: 21223388
    [TBL] [Abstract][Full Text] [Related]  

  • 13. SABRE is required for stabilization of root hair patterning in Arabidopsis thaliana.
    Pietra S; Lang P; Grebe M
    Physiol Plant; 2015 Mar; 153(3):440-53. PubMed ID: 25124848
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Network building: transcriptional circuits in the root.
    Birnbaum K; Benfey PN
    Curr Opin Plant Biol; 2004 Oct; 7(5):582-8. PubMed ID: 15337102
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Proteomics in deciphering the auxin commitment in the Arabidopsis thaliana root growth.
    Mattei B; Sabatini S; Schininà ME
    J Proteome Res; 2013 Nov; 12(11):4685-701. PubMed ID: 24032454
    [TBL] [Abstract][Full Text] [Related]  

  • 16. WOX5-IAA17 feedback circuit-mediated cellular auxin response is crucial for the patterning of root stem cell niches in Arabidopsis.
    Tian H; Wabnik K; Niu T; Li H; Yu Q; Pollmann S; Vanneste S; Govaerts W; Rolcík J; Geisler M; Friml J; Ding Z
    Mol Plant; 2014 Feb; 7(2):277-89. PubMed ID: 23939433
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Identification of SHRUBBY, a SHORT-ROOT and SCARECROW interacting protein that controls root growth and radial patterning.
    Koizumi K; Gallagher KL
    Development; 2013 Mar; 140(6):1292-300. PubMed ID: 23444357
    [TBL] [Abstract][Full Text] [Related]  

  • 18. MicroRNA-mediated signaling involved in plant root development.
    Meng Y; Ma X; Chen D; Wu P; Chen M
    Biochem Biophys Res Commun; 2010 Mar; 393(3):345-9. PubMed ID: 20138828
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Overexpressing the ANR1 MADS-box gene in transgenic plants provides new insights into its role in the nitrate regulation of root development.
    Gan Y; Bernreiter A; Filleur S; Abram B; Forde BG
    Plant Cell Physiol; 2012 Jun; 53(6):1003-16. PubMed ID: 22523192
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The roles of peptide hormones during plant root development.
    Yamada M; Sawa S
    Curr Opin Plant Biol; 2013 Feb; 16(1):56-61. PubMed ID: 23219865
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.